
Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 1 z 36

Komunikacja w IT

„Przecież to było oczywiste”

Autor:

Tomasz Namyslo

Data:

01.02.2026

Link:

https://tomecki.studio/communication-in-it/

Wersja polska:

https://tomecki.studio/pl/communication-in-it/

Zapraszam Cię do praktycznych rozważań na temat błędów komunikacji i

wynikających z nich poważnych konsekwencji. Mam nadzieję, że niniejszy

artykuł przyniesie Ci wiele praktycznych wskazówek. Nie jest kolejnym

zlepkiem akademickich teorii, a dzięki niemu unikniesz konkretnych błędów.

Jest to bowiem spojrzenie na problem z perspektywy kogoś, kto ma spore,

praktyczne doświadczenie z projektami, zarówno po stronie zlecającego lub

zarządzającego, jak również po stronie wykonawczej. Zarówno w większych

zespołach, w tym międzynarodowych, skupiających się na realizacji bardziej

skomplikowanych zadań, jak też w zwykłych zadaniach, realizowanych przez

małe grupy. Chciałbym w ten sposób uświadomić Czytelnikowi, gdzie – tak

naprawdę – ukrywają się przyczyny błędów i w jaki sposób minimalizować

ich ilość. Postaram się też wskazać kilka analogii, aby ułatwić zrozumienie

tych bardziej skomplikowanych zagadnień. Posłużę się również kilkoma

prostymi i prawdziwymi przykładami błędów, które wygenerowały bardzo

konkretne straty, a można było łatwo ich uniknąć (napiszę w jaki sposób).

Znajdziesz tutaj również ciekawostki, np. w jaki sposób pewna katastrofa

lotnicza przyczyniła się do przyszłych usprawnień wielu dziedzin życia.

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 2 z 36

Spis treści

Wstęp .. 4

1. Dlaczego mylnie oceniamy skuteczność naszej komunikacji? ... 4

1.1. Błędne założenie, że inni rozumieją nasze intencje ... 4

1.1.1. Iluzja przejrzystości .. 4

1.1.2. Żargon .. 5

1.1.3. Paradoks narzędzi .. 6

1.2. Bezpieczeństwo psychologiczne ... 6

1.2.1. Co to takiego? .. 6

1.2.2. Kultura organizacyjna a przepływ informacji .. 7

1.3. Architektura systemu jako odbicie struktury komunikacyjnej ... 7

1.4. Niejasne i zmieniające się wymagania.. 8

1.5. Presja czasu i budżet ... 8

1.6. Koordynacja i konflikty ... 8

1.7. Podsumowanie: Klasyczne bariery komunikacyjne w kontekście IT .. 9

2. Negatywne efekty złej komunikacji ... 9

2.1. Konsekwencje biznesowe: Od błędu ludzkiego do strat finansowych ... 9

2.2. Dług technologiczny ... 10

2.3. Nieodwracalne skutki ... 10

3. Jak ulepszyć komunikację .. 11

3.1. Budowanie wspólnej rzeczywistości ... 11

3.2. Budowanie ekosystemu efektywnej komunikacji .. 11

Filar I: Od odpowiedzialności indywidualnej do generatywnej ... 11

Filar II: Inżynieria przejrzystości w wytwarzaniu oprogramowania ... 12

Filar III: Świadoma architektura współpracy ... 12

3.3. Mediator ... 13

3.3.1 Rola mediatora ... 13

3.3.2. Przykładowe scenariusze mediacji w IT ... 14

4. Przykładowe case’y nieporozumień .. 15

Case: „Dodaj wyszukiwanie” → jak rodzi się nieporozumienie ... 15

Jak powinno wyglądać dobre zgłoszenie: .. 17

Case: „Macie 24/7 i reakcję w 15 minut” → a potem drama o 22:30 ... 19

5. Pomocne materiały .. 21

5.1. Checklisty mediacji w projektach IT ... 21

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 3 z 36

A) Sygnały ostrzegawcze — zabezpiecz możliwość mediacji, gdy pojawia się co najmniej jedno z

poniższych: .. 21

B) Przygotowanie spotkania: ... 22

C) Artefakty po sesji (żadnych „notatek z rozmów” bez formy): ... 22

5.2. Checklista "Użytecznego ticketu": .. 22

5.3. Manifest komunikacji (do wklejenia w README zespołu), przykładowy: .. 23

5.4. Polityka kanałów (koniec “przełączania kontekstu”), przykładowa: .. 23

5.5. “Follow-up po rozmowie sprzedażowej” – szablon e-maila / notatki, przykładowy: 24

5.6. Karta lidera — codzienne zachowania budujące bezpieczeństwo psychologiczne: 24

5.7. „Dług komunikacyjny” — mierzalny wskaźnik.. 25

5.8. Pakiet komunikacji incydentowej ... 26

A) Slack — start incydentu (wewnętrznie) .. 26

B) Slack — update wewnętrzny (cykliczny) ... 27

C) Do klienta — update cykliczny (zewnętrznie) ... 28

D) „Po incydencie” — mini-podsumowanie bez szukania winnych .. 29

Podsumowanie .. 30

Referencje .. 32

Bibliografia ... 34

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 4 z 36

Wstęp

Panuje powszechne przekonanie, że komunikacja to umiejętność „miękka” – dodatek do twardych,

technicznych kompetencji [1] [2] [3] [4] [5] [6]. Postaram się udowodnić, że takie podejście może

być fundamentalnym błędem w ocenie ryzyka. Komunikacja nie jest umiejętnością miękką; jest

krytyczną funkcją operacyjną, której awaria generuje realne, mierzalne koszty: od utraconej

produktywności po katastrofalne w skutkach luki bezpieczeństwa. Stoimy w obliczu paradoksu:

mimo że dysponujemy dziesiątkami narzędzi do współpracy, od Slacka po Jirę, nasze zespoły coraz

częściej doświadczają fragmentacji wiedzy, przeciążenia poznawczego i chronicznego braku

kontekstu [7] [8]. Zrozumienie ukrytych sił psychologicznych i strukturalnych, które po cichu

sabotują przepływ informacji, jest pierwszym krokiem do zbudowania prawdziwie wydajnej i

odpornej organizacji [9] [10] [11] [12].

1. Dlaczego mylnie oceniamy skuteczność naszej

komunikacji?

Fundamentalne błędy komunikacyjne nie zaczynają się w kanale na Slacku ani w treści e-maila.

Zaczynają się w naszych umysłach, na długo przed wypowiedzeniem słowa [9] [10] [11] [13]. U ich

podstaw leżą wrodzone błędy poznawcze, które sprawiają, że systematycznie przeceniamy

klarowność naszych intencji i przekazu. Zrozumienie tych uniwersalnych mechanizmów jest

kluczowe dla liderów, którzy chcą diagnozować i rozwiązywać problemy w swoich zespołach u

samego źródła.

1.1. Błędne założenie, że inni rozumieją nasze intencje

1.1.1. Iluzja przejrzystości

Zjawisko psychologiczne znane jako „iluzja przejrzystości” opisuje naszą tendencję do przeceniania

stopnia, w jakim nasze stany wewnętrzne – myśli, intencje i emocje – są widoczne dla innych [9].

Klasyczny eksperyment doskonale to ilustruje: uczestników poproszono o wystukanie na blacie

stołu melodii znanej piosenki [9]. Wystukujący byli przekonani, że słuchacze z łatwością odgadną

utwór, ponieważ w ich głowach melodia brzmiała w pełni. W rzeczywistości słuchacze, słysząc

jedynie serię bezkontekstowych uderzeń, byli w stanie zidentyfikować zaledwie kilka procent

piosenek.

Ta iluzja manifestuje się codziennie w miejscu pracy. W kontekście zespołu programistycznego,

iluzja przejrzystości manifestuje się na wiele destrukcyjnych sposobów:

• Deweloper: Zakłada, że jego poważne obawy dotyczące skomplikowanego rozwiązania

technicznego są oczywiste dla reszty zespołu, nawet jeśli wyraził je jedynie poprzez

subtelne uwagi na spotkaniu. W jego głowie alarm brzmi głośno, ale na zewnątrz słychać

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 5 z 36

tylko cichy szept… szept, który kilka sprintów (sprint = okres czasowy) później zamienia się

w krzyk podczas kosztownego refactoringu (przebudowa kodu).

• Product Owner: Jest przekonany, że jego entuzjazm i wizja nowej funkcjonalności zostały w

pełni przekazane deweloperom podczas jednego, krótkiego spotkania. Zakłada, że wszyscy

podzielają jego perspektywę, nie zdając sobie sprawy, że dla zespołu była to tylko jedna z

wielu informacji tego dnia… informacja, która bez doprecyzowania prowadzi do

implementacji funkcji niezgodnej z wizją biznesową.

• Lider Zespołu: Wierzy, że jego empatia i dobre intencje są widoczne podczas

przekazywania trudnego feedbacku. Tymczasem odbiorca, nie mając wglądu w te

wewnętrzne stany, może odczytywać jedynie suchą krytykę i atak… co podkopuje zaufanie i

zamyka kanał do szczerej rozmowy w przyszłości.

1.1.2. Żargon

Żargon jest paradoksalnym narzędziem. Stworzony jako precyzyjny skrót myślowy dla ekspertów w

wąskiej dziedzinie, staje się murem nie do przebicia, gdy jest używany w szerszym kontekście

organizacyjnym. Nadużywanie specjalistycznego języka jest przejawem „klątwy wiedzy” – błędu

poznawczego polegającego na niezdolności do spojrzenia na problem z perspektywy osoby, która

nie posiada naszej specjalistycznej wiedzy [14] [15] [16].

Badania z Journal of Language and Social Psychology [17] pokazują, że żargon nie tylko utrudnia

zrozumienie, ale aktywnie zniechęca i obcuje odbiorców, obniżając ich zaangażowanie. Doskonale

ilustruje to analogia z artykułu Venture in Security [3], która porównuje specjalistów technicznych

do lekarzy. Autor zauważa, że choć medycyna jest dziedziną niezwykle złożoną, pacjent

odwiedzający gabinet oczekuje wyjaśnień sformułowanych w prostych słowach, a nie w łacinie.

Współczesna rola eksperta – czy to lekarza, czy inżyniera bezpieczeństwa – ewoluuje w stronę

trenera i doradcy, który prezentuje różne opcje oraz ich implikacje, ale to pacjentowi (lub liderowi

biznesowemu) pozostawia podjęcie ostatecznej, świadomej decyzji. W tym ujęciu biznesowi

decydenci nie potrzebują technicznych detali o rodzinach oprogramowania, lecz zrozumienia, jak

konkretne ryzyka mogą wpłynąć na ich przychody, reputację lub ciągłość operacji.

Analogia: Iluzję przejrzystości można porównać do mówienia w bardzo głośnym

pomieszczeniu – nam wydaje się, że krzyczymy (nasz głos wewnętrzny jest potężny i

wyraźny), podczas gdy dla osoby stojącej metr dalej jesteśmy jedynie ledwie słyszalnym

szeptem pośród ogólnego hałasu. Błąd polega na założeniu, że to, co tak głośno rozbrzmiewa

w naszej głowie, musi być równie wyraźnie słyszane przez wszystkich wokół.

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 6 z 36

1.1.3. Paradoks narzędzi

Współczesne firmy toną w narzędziach do współpracy, co prowadzi do nieintuicyjnych,

negatywnych skutków [18]. Czas spędzany przez pracowników na działaniach zespołowych wzrósł

o 50% lub więcej [19], a według badań przytoczonych przez Lokalise, pracownicy przełączają się

między aplikacjami średnio 33 razy dziennie [8]. To zjawisko generuje dwa ukryte koszty:

• Zmęczenie narzędziowe: Stres i frustracja wynikające z konieczności obsługi zbyt wielu,

często redundantnych, aplikacji.

• Przełączanie kontekstu: Każde przejście między Slackiem, Jirą a skrzynką e-mailową

generuje koszt poznawczy, który rozprasza uwagę i niszczy zdolność do głębokiej pracy.

Fragmentacja informacji sprawia, że praca zaczyna przypominać „archeologię” – więcej czasu

spędza się na poszukiwaniu rozproszonego kontekstu niż na tworzeniu wartości. Raport Lokalise

jest alarmujący: 60% pracowników twierdzi, że zmęczenie narzędziowe negatywnie wpływa na ich

zdolność do współpracy, a 36% wskazuje na jego szkodliwy wpływ na zdrowie psychiczne [8].

1.2. Bezpieczeństwo psychologiczne

1.2.1. Co to takiego?

Bezpieczeństwo psychologiczne to wspólna wiara członków zespołu, że mogą oni podejmować

ryzyko interpersonalne – takie jak zadawanie pytań, przyznawanie się do błędów, oferowanie

nowych pomysłów czy kwestionowanie decyzji – bez obawy o bycie upokorzonym, zignorowanym

lub ukaranym. Nie jest to synonim przyjaźni, ale warunek konieczny do prowadzenia otwartej,

szczerej i skutecznej komunikacji, która jest niezbędna do wczesnego wykrywania i spłacania długu

technicznego. W warunkach chronicznego stresu i presji, naturalne mechanizmy obronne

prowadzą do ograniczenia współpracy. Działania wymagające zaufania i otwartości, takie jak

programowanie w parach (Pair Programming) czy szczere recenzje kodu (Code Review), stają się

rzadsze. Zamiast tego rośnie tendencja do tworzenia silosów informacyjnych, czyli izolowanych

„wysp” wiedzy i informacji, które uniemożliwiają swobodny przepływ informacji między zespołami

oraz "chomikowania" wiedzy, ponieważ w niebezpiecznym środowisku informacja staje się walutą,

która chroni pozycję jednostki.

Brak bezpieczeństwa psychologicznego jest jednym z głównych źródeł stresu i wypalenia

zawodowego w branży IT. Dane są alarmujące: nawet 80% deweloperów doświadcza wypalenia, a

praca nad kodem niskiej jakości (będącym efektem długu technicznego) pochłania od 23% do 42%

ich czasu [20]. To tworzy błędne koło: dług techniczny generuje stres, a zestresowani deweloperzy

tworzą więcej długu technicznego [21].

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 7 z 36

1.2.2. Kultura organizacyjna a przepływ informacji

Socjolog Ron Westrum stworzył model, który opisuje, jak informacja przepływa przez organizację

w zależności od jej kultury [22]. Jego typologia pomaga zrozumieć, dlaczego w jednych

organizacjach problemy są zamiatane pod dywan, a w innych są szybko ujawniane i

wykorzystywane jako okazja do uczenia się oraz usprawnień.

• Kultura Patologiczna (zorientowana na władzę): Informacje są ukrywane i traktowane jako

osobiste źródło siły. Posłańcy przynoszący złe wieści są symbolicznie "rozstrzeliwani". Błędy

prowadzą do szukania winnych i kar.

• Kultura Biurokratyczna (zorientowana na zasady): Informacje przepływają przez formalne

kanały, ale często są ignorowane. Błędy prowadzą do tworzenia nowych regulaminów i

procedur.

• Kultura Generatywna (zorientowana na wydajność): Informacje są aktywnie poszukiwane.

Błędy są analizowane jako źródło nauki i prowadzą do usprawnienia systemu. Współpraca

jest wysoka i ceniona.

1.3. Architektura systemu jako odbicie struktury

komunikacyjnej

W 1968 roku programista Melvin Conway opisał zależność, która stała się prawem inżynierii

oprogramowania: "Organizacje projektują systemy, które są kopią ich struktury komunikacyjnej"

[23] [24]. Oznacza to, że granice między zespołami i działami nieuchronnie odzwierciedlają się w

interfejsach i modułach tworzonego oprogramowania. Firmy takie jak Netflix czy Amazon, z ich

małymi, autonomicznymi zespołami, naturalnie tworzą zdecentralizowane systemy oparte na

mikroserwisach. Każdy zespół odpowiada za swój kawałek systemu i komunikuje się z innymi przez

jasno zdefiniowane API. Z drugiej strony, komunikacja między tymi działami jest często powolna i

sformalizowana, co skutkuje powstawaniem nieoptymalnych interfejsów, problemami z integracją

i kumulowaniem się ogromnego długu architektonicznego [25] [21]. W odpowiedzi na ten problem

powstała świadoma strategia znana jako "Odwrotny Manewr Conwaya" (Reverse Conway

Maneuver) [26] [27]. Polega ona na celowej reorganizacji struktury zespołów, aby wymusić

powstanie pożądanej architektury oprogramowania, a nie biernie akceptować architekturę

narzuconą przez istniejącą strukturę.

Analogia: Struktura organizacji jest jak układ rur w budynku. Jeśli hydraulicy (backend) i

elektrycy (frontend) pracują w całkowicie oddzielnych budynkach i rzadko ze sobą

rozmawiają, rury i kable w nowym domu prawdopodobnie będą się krzyżować w

nielogicznych miejscach, a ich połączenie będzie wymagało karkołomnych „obejść”.

Odwrotny Manewr Conwaya to decyzja o umieszczeniu tych wszystkich specjalistów w

jednym pokoju wokół planu konkretnego piętra (mikroserwisu), aby rury i kable naturalnie

ułożyły się w najprostszy, najbardziej efektywny sposób.

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 8 z 36

1.4. Niejasne i zmieniające się wymagania

Zarówno prace naukowe, jak i doświadczenie, wskazują, że zmienność wymagań istotnie zwiększa

ryzyko opóźnień oraz destabilizacji architektury, a dynamiczne, niezorganizowane projekty

pokazują, że nagłe zmiany wprowadzane na późnych etapach nieproporcjonalnie wpływają na

koszt [28] [29]. Problem zwykle nie zaczyna się od źle wykonanej pracy, lecz od niejasnych pojęć

(np. „szybkie”, „łatwe”, „skalowalne”) i rozjechanych definicji gotowości (Definition of

Ready/Definition of Done), co bez jawnych definicji i przykładów wraca w testach oraz UAT (User

Acceptance Testing) [30]. Dodatkowo zmieniające się priorytety nie oznaczają nieograniczonej

liczby zmiany koncepcji co sprint — ciągłe przestawianie bez domknięcia pętli decyzyjnej eskaluje

chaos i utajony opór [31]. Literatura RE (Requirements Engineering) pokazuje, że

niejednoznaczność języka naturalnego w specyfikacjach jest częsta, a narzędzia do jej

automatycznego wykrywania wciąż mają ograniczoną, niestabilną skuteczność. Strukturyzowanie

rozmów o zakresie i priorytetach oraz tworzenie „artefaktów granicznych” (Boundary Objects)

staje się realną inwestycją w przewidywalność i spójność rozumienia [32] [33].

1.5. Presja czasu i budżet

Przeglądy literatury potwierdzają, że presja czasu, choć bywa stymulantem krótkoterminowej

produktywności, zazwyczaj obniża jakość oprogramowania i pogarsza dobrostan zespołu,

prowadząc do zjawiska „kupowania” szybkości kosztem długu technicznego i błędów [34].

Eksperymenty wskazują, że skracanie terminów zwiększa skłonność deweloperów do

podejmowania ryzykownych skrótów. Można temu zapobiec stosując „mediację na gorąco”, która

przełoży presję polityczną na realne ustępstwa w zakresie i kolejności zadań. Dodawanie

funkcjonalności przy stałym budżecie, będące reakcją biznesu na rynek, przez zespoły odbierane

jest jako wymuszona redukcja jakości, a badania nad zmiennością wymagań (Requirements

Volatility) dowodzą, że brak jasnego kompromisu w tym obszarze destabilizuje architekturę i

generuje opóźnienia. Skuteczny mediator może zatem rozdzielić dyskusję o wartości („co”) od

technicznej realizacji („jak/kiedy”), aby wypracować kompromis i uniknąć chaosu wynikającego z

niejednoznacznych priorytetów.

1.6. Koordynacja i konflikty

Badania Herbsleba i Mockusa nad inżynierią oprogramowania dowodzą, że zadania realizowane w

zespołach rozproszonych geograficznie zajmują około 2,5 razy więcej czasu niż analogiczne zadania

wykonywane w jednej lokalizacji, co jest bezpośrednim skutkiem konieczności angażowania

większej liczby osób do rozwiązania problemów oraz znacznie rzadszej i mniej efektywnej

komunikacji [35]. Z kolei w obszarze konfliktów wewnętrznych Bacchelli i Bird pokazują, że

nowoczesny code review jest kluczowym narzędziem transferu wiedzy i budowania świadomości

zespołu [36]. W praktyce jednak dyskusje często schodzą na styl i formatowanie zamiast na

głębokie defekty. Dla recenzentów największym wyzwaniem bywa zrozumienie kontekstu zmiany

oraz intencji autora. Zarówno przy opóźnieniach wynikających z rozproszenia, jak i przy sporach o

standardy w code review, neutralna moderacja pomaga domykać wątki i skracać cykl pytań–

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 9 z 36

odpowiedzi. Kluczowe są też jasne zasady komunikacji i kryteria akceptacji. To inwestycja, która

redukuje czas realizacji i poprawia koordynację, ograniczając kosztowne nieporozumienia

wynikające z braku wspólnego kontekstu.

1.7. Podsumowanie: Klasyczne bariery komunikacyjne w

kontekście IT

Poza Prawem Conwaya, zespoły programistyczne zmagają się z klasycznymi barierami

komunikacyjnymi, które w środowisku IT nabierają specyficznego charakteru.

Bariera Implikacje dla Zespołu Programistycznego

Filtrowanie

informacji

Menedżer ukrywa przed zespołem realne problemy z budżetem lub terminami,

bojąc się negatywnej reakcji. Zespół, nieświadomy pełnego kontekstu, podejmuje

decyzje techniczne, które są nieoptymalne w dłuższej perspektywie, np.

wybierając droższe, ale szybsze w implementacji rozwiązanie.

Przeciążenie

informacyjne

Deweloperzy są bombardowani setkami powiadomień z Jiry, Slacka i e-maili.

Kluczowe informacje o zmianie wymagań giną w szumie, co prowadzi do

implementacji nieaktualnych funkcjonalności. Zjawisko to jest tak powszechne, że

wielu pracowników po prostu przestaje czytać powiadomienia.

Żargon

techniczny

Używanie specjalistycznego języka poza wąską grupą ekspertów tworzy barierę i

poczucie wykluczenia. Na linii biznes-IT prowadzi to do fundamentalnych

nieporozumień co do celów i wymagań projektu.

Różnice

kulturowe

W zespołach międzynarodowych styl komunikacji ma ogromne znaczenie. W

kulturach niskiego kontekstu (np. Niemcy, USA) ceni się bezpośredniość i

precyzję. W kulturach wysokiego kontekstu (np. Japonia, kraje arabskie) kluczowe

są relacje, a komunikat jest często zawoalowany. Bezpośredni feedback od

niemieckiego lidera może być odebrany przez japońskiego programistę jako

brutalny atak.

2. Negatywne efekty złej komunikacji

2.1. Konsekwencje biznesowe: Od błędu ludzkiego do strat

finansowych

Brak precyzyjnej komunikacji i wspólnego ugruntowania (Grounding) wiedzy prowadzi do

drastycznych strat finansowych, gdzie koszt naprawy błędu wykrytego w fazie operacyjnej może

być od 29 do ponad 1500 razy wyższy niż na etapie definiowania wymagań [37]. Statystyki

potwierdzają, że błąd ludzki jest czynnikiem w 95% naruszeń bezpieczeństwa danych [38] [39], a

zespoły polegające na iluzji wzajemnego zrozumienia stają się podatne na manipulacje.

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 10 z 36

Dramatycznym przykładem jest incydent w firmie Ubiquiti Networks, która straciła 46,7 miliona

dolarów [40] w wyniku ataku opartego na socjotechnice. Cyberprzestępcy, podszywając się pod

kierownictwo wyższego szczebla, wykorzystali zaufanie pracowników i presję czasu, aby zlecić

serię nieautoryzowanych przelewów. Pracownicy działali pod wpływem iluzji, że intencje nadawcy

są autentyczne, co doprowadziło do finansowej katastrofy. To pokazuje, jak błędy poznawcze w

komunikacji stają się wektorem ataku na całą organizację.

2.2. Dług technologiczny

Dług technologiczny to potężna metafora, która doskonale oddaje konsekwencje kompromisów w

procesie tworzenia oprogramowania. Zapożyczona ze świata finansów, opisuje sytuację, w której

świadomie lub nieświadomie wybieramy szybkie, ale nieoptymalne rozwiązanie, aby dotrzymać

terminu. Zaciągamy w ten sposób "kredyt" u przyszłości. Ten kredyt trzeba będzie spłacić z

"odsetkami" w postaci dodatkowej pracy potrzebnej na naprawę, refaktoryzację lub przebudowę

systemu [41]. Jak definiuje to Gartner, dług technologiczny to "praca, którą jesteśmy winni

systemowi IT" [42]. Ignorowany narasta, aż w końcu może doprowadzić do paraliżu rozwojowego i

technologicznego bankructwa projektu.

Dług technologiczny nie jest jednorodnym zjawiskiem. Można go podzielić na kilka kluczowych

kategorii, z których każda ma inne przyczyny i konsekwencje:

• Dług w kodzie: Najbardziej oczywista forma długu. Obejmuje takie praktyki jak stosowanie

"obejść", brak testów jednostkowych i integracyjnych, duplikację kodu czy ignorowanie

standardów kodowania.

• Dług architektoniczny: Znacznie poważniejszy i trudniejszy do spłacenia. Powstaje w

wyniku złych decyzji projektowych na wczesnym etapie, co prowadzi do nieoptymalnej

integracji komponentów czy wyboru przestarzałej technologii.

• Dług w dokumentacji: Skutek presji czasu, w której dokumentacja jest traktowana jako

zadanie o niskim priorytecie. Objawia się nieaktualną, niekompletną lub całkowicie

nieistniejącą dokumentacją, co drastycznie utrudnia wdrażanie nowych członków zespołu i

utrzymanie systemu.

• Dług procesowy: Dotyczy nieefektywnych lub przestarzałych procesów wytwórczych,

takich jak manualne i czasochłonne procesy wdrożeniowe, brak automatyzacji testów czy

skomplikowane i niejasne procedury zatwierdzania zmian.

2.3. Nieodwracalne skutki

Tragiczne zderzenie dwóch Boeingów 747 na Teneryfie w 1977 roku, w którym zginęły 583 osoby,

stanowi drastyczny przykład tego, jak łańcuch drobnych nieporozumień, potęgowany presją czasu i

sztywną hierarchią, prowadzi do katastrofy [43]. Wypadek ten nie był skutkiem pojedynczego

błędu technicznego, lecz kumulacją czynników ludzkich i komunikacyjnych. W gęstej mgle i przy

przeciążonej łączności radiowej doszło do kaskady nieporozumień: załoga KLM rozpoczęła start

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 11 z 36

bez otrzymania zezwolenia, podczas gdy samolot Pan Am wciąż znajdował się na pasie. Kluczową

rolę odegrała presja czasu oraz to, że kapitan KLM był jednocześnie głównym instruktorem

pilotów, co wzmacniało hierarchię w kokpicie i utrudniało skuteczne zakwestionowanie decyzji w

krytycznym momencie. Lekcja płynąca z tego zdarzenia zrewolucjonizowała lotnictwo, wymuszając

wprowadzenie standardów jednoznacznej komunikacji i procedur wzajemnego potwierdzania

zrozumienia, co dobitnie pokazuje, że precyzja języka i weryfikacja intencji są fundamentalnymi

mechanizmami bezpieczeństwa.

3. Jak ulepszyć komunikację

3.1. Budowanie wspólnej rzeczywistości

Skuteczna komunikacja wykracza poza prostą wymianę informacji i wymaga aktywnego procesu

budowania „wspólnego gruntu”, który zapewnia, że komunikat został nie tylko odebrany, ale i

włączony do współdzielonej wiedzy zespołu. W praktyce inżynierii oprogramowania proces ten jest

często zaburzony przez zjawisko „cienkiej warstwy wiedzy domenowej”, zidentyfikowane przez

Curtisa w badaniach 17 dużych systemów, gdzie powierzchowne zrozumienie celów biznesowych

przez deweloperów prowadziło do błędnych interpretacji wymagań [12]. Ten deficyt

kompetencyjny często skutkował centralizacją kluczowych decyzji architektonicznych w rękach

wąskiej koalicji „guru projektowych”, co, choć pozwalało na szybki postęp, tłumiło poszukiwanie

alternatywnych rozwiązań i zwiększało ryzyko utrwalenia błędów w fundamentach systemu.

3.2. Budowanie ekosystemu efektywnej komunikacji

Przejście od diagnozy do działania wymaga strategicznego planu. Zamiast ogólnikowych porad,

poniższe zalecenia koncentrują się na trzech filarach transformacji: świadomym kształtowaniu

kultury, inżynierii przejrzystych procesów oraz celowym projektowaniu stosu technologicznego.

Filar I: Od odpowiedzialności indywidualnej do generatywnej

Aby zneutralizować "Iluzję Przejrzystości" i zbudować fundament odporny na ataki

socjotechniczne, liderzy muszą systematycznie budować kulturę generatywną. Budowanie

bezpieczeństwa psychologicznego zaczyna się od nich samych. Kluczowe, codzienne działania,

które modelują pożądane zachowania, to:

Analogia: Brak wspólnej płaszczyzny wiedzy domenowej w zespole programistycznym

przypomina budowanie nowoczesnego szpitala przez ekipę budowlaną, która nigdy nie

widziała, jak funkcjonuje opieka medyczna. Nawet jeśli budowniczy (deweloperzy) potrafią

perfekcyjnie kłaść cegły (pisać kod), to bez zrozumienia przepływu pacjentów i specyfiki

pracy personelu (wiedzy domenowej) mogą umieścić salę operacyjną zbyt daleko od

oddziału ratunkowego. W rezultacie powstaje system technicznie sprawny, ale funkcjonalnie

wadliwy, którego naprawa w późniejszym czasie jest niezwykle kosztowna.

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 12 z 36

• Ujmuj pracę w kategoriach problemu do nauczenia się, a nie problemu do wykonania:

Podkreślaj, że każdy projekt jest eksperymentem, a celem jest nie tylko dostarczenie

wyniku, ale przede wszystkim nauka i adaptacja. Zmienia to perspektywę z presji na

wykonanie na ciekawość i odkrywanie.

• Uznawaj własną omylność: Otwarcie przyznawaj się do błędów, niewiedzy i niepewności.

Mówiąc "nie wiem, co o tym myślicie?" lub "mogę się mylić, ale...", lider tworzy przestrzeń

dla innych, aby mogli robić to samo bez lęku.

• Modeluj ciekawość i zadawaj pytania: Aktywnie proś o opinie i wkład, pokazując, że cenisz

perspektywę całego zespołu. Pytania takie jak "Co widzicie, czego ja nie dostrzegam?" lub

"Jakie mamy inne opcje?" zapraszają do dialogu i kwestionowania status quo.

Filar II: Inżynieria przejrzystości w wytwarzaniu oprogramowania

Bezpośrednią odpowiedzią na problem "Języka jako Muru" i chaosu wynikającego z paradoksu

narzędzi jest inżynieria przejrzystych procesów, które wymuszają ugruntowanie i tworzą wspólny

kontekst. Precyzja w definiowaniu zadań drastycznie redukuje obciążenie poznawcze

deweloperów i eliminuje marnotrawstwo. Kluczowe jest wdrożenie ustrukturyzowanych rytuałów

komunikacyjnych:

• Sesje "3 Amigos" (Product Owner, Deweloper, Tester) [44] [45]: Krótkie spotkania mające

na celu wypracowanie wspólnego zrozumienia wymagań i kryteriów akceptacji przed

rozpoczęciem implementacji. To mechanizm ugruntowania w praktyce.

• Egzekwowanie "Definition of Ready" (DoR): Zespół deweloperski musi mieć prawo do

odrzucenia zadań, które są niejasne lub niekompletne. DoR działa jak kontrakt, chroniąc

czas inżynierów przed marnotrawstwem.

• Standaryzacja "Definition of Done" (DoD): Jasna, wspólna definicja tego, co oznacza

"zrobione", gwarantuje, że każde zadanie jest w pełni przetestowane, zintegrowane i

gotowe do wdrożenia.

• Użyteczny ticket [5] [46]: Zawiera pełen kontekst (dlaczego to robimy?), jasne kryteria

akceptacji (co ma zostać zrobione?) oraz linki do zasobów (projekty w Figmie,

dokumentacja), aby uniknąć "archeologii informacyjnej".

• Example Mapping: Warsztatowa technika, podczas której zespół za pomocą kolorowych

karteczek wizualizuje reguły biznesowe, przykłady ich działania oraz pytania i niejasności.

Pozwala to na szybkie odkrycie luk w specyfikacji.

Filar III: Świadoma architektura współpracy

Ponieważ Prawo Conwaya dyktuje, że nasza architektura jest odbiciem komunikacji, świadome

projektowanie stosu technologicznego staje się proaktywnym narzędziem do kształtowania

pożądanych, efektywnych ścieżek przepływu informacji. Celem nie jest eliminacja narzędzi, ale ich

celowa integracja.

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 13 z 36

• Przeprowadź audyt stosu technologicznego: Zidentyfikuj redundantne narzędzia, które

pełnią te same funkcje, oraz zlokalizuj silosy informacyjne.

• Ustal jasne zasady użycia: Zdefiniuj, które narzędzie służy do czego, np. Slack do szybkich

pytań asynchronicznych, e-mail do formalnej komunikacji zewnętrznej, Jira do śledzenia

pracy.

• Zastosuj "Odwrotny Manewr Conwaya": Świadomie zorganizuj zespoły wokół pożądanej

architektury produktu. Ich naturalne ścieżki komunikacji będą wspierać, a nie sabotować,

cele technologiczne.

3.3. Mediator

3.3.1 Rola mediatora

Rola mediatora w zespole polega na działaniu jako neutralny tłumacz między biznesem a

technologią. Może on wykorzystywać „artefakty graniczne” (Boundary Objects) [47] – takie jak

modele architektury czy specyfikacje wymagań – do synchronizacji znaczeń bez narzucania

jednolitej perspektywy, co jest kluczowe dla efektywnej koordynacji w środowiskach agile. Zamiast

„kto ma rację”, mediator pomaga ustalić, jaką decyzję trzeba podjąć i jakie są jej skutki

architektoniczne, kosztowe i operacyjne. Jako moderator rozmów krytycznych, mediator dba o

bezpieczeństwo psychologiczne, które stanowi niezbędny warunek, aby konflikt zadaniowy

stymulował jakość decyzji, zamiast obniżać wyniki zespołu [48] [49] [50]. W obliczu presji czasu,

która często prowadzi do poświęcenia jakości na rzecz szybkości, mediator urealnia

harmonogramy poprzez formalizowanie kompromisów dotyczących zakresu i priorytetów,

chroniąc zespół przed chaosem decyzyjnym. Całość procesu dopełnia dbałość o pamięć

organizacyjną: poprzez promowanie kultury uczenia się (np. podejście blameless) oraz

„zamrażanie” ustaleń w formie jawnych standardów takich jak DoR i DoD, mediator zapewnia

przejrzystość procesu i zapobiega powracaniu do już rozwiązanych problemów. Efekt jest

mierzalny: krótsze lead time’y decyzji, mniej reworku i mniej przerw w pracy. Global Software

Development pokazuje, że znaczną część „haraczu rozproszenia” płacimy w koordynacji i

komunikacji [35] — i to właśnie tam mediacja odcina straty: szybciej doprecyzowuje oczekiwania i

definicje, ogranicza eskalację konfliktów, minimalizuje koszt zmienności wymagań dzięki jawnym

kompromisom oraz chroni jakość pod presją czasu poprzez negocjowanie zakresu zamiast

„wyciskania” zespołu. W skrócie: godziny tracone na tarcia rzadko tworzą wartość, a dobrze

poprowadzona mediacja zamienia je w postęp decyzyjny, co statystycznie obniża ryzyko opóźnień i

kosztów, a jednocześnie wspiera jakość i morale.

Analogia: Praca z artefaktami granicznymi przypomina korzystanie z klocków LEGO przez

dzieci i inżynierów. Dla dzieci klocki to zabawka (lokalna perspektywa), dla inżyniera to

system geometrycznych połączeń (techniczna perspektywa). Jednak dzięki temu, że sam

klocek ma stały kształt i standardowe wypustki (artefakt graniczny), obie grupy mogą

wspólnie zbudować model zamku, mimo że dla każdego z nich ten zamek „znaczy” co innego.

Klocki pozwalają im się zsynchronizować bez zmuszania dziecka do bycia inżynierem.

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 14 z 36

3.3.2. Przykładowe scenariusze mediacji w IT

Scenariusz: Awaria systemu e-commerce

Sytuacja: Platforma e-commerce przestała działać, co generuje bezpośrednie straty finansowe dla

klienta. W zespole trwa konflikt i przerzucanie się odpowiedzialnością: dostawca zewnętrzny

wskazuje na błąd w aplikacji, natomiast zespół wewnętrzny obwinia infrastrukturę partnera.

Rola mediatora: Mediator przejmuje kontrolę nad sytuacją kryzysową, wdrażając procedury

oparte na inżynierii niezawodności (Site Reliability Engineering), rozpoczynając od ustanowienia

„blameless war room” – przestrzeni skupionej na faktach i chronologii zdarzeń, a wolnej od

szukania winnych. Jego zadaniem jest analityczne rozdzielenie pierwotnej przyczyny awarii (Root

Cause Analysis) od czynników sprzyjających, które jedynie zwiększyły jej skalę lub czas trwania, co

pozwala przekierować energię zespołu z obrony własnych pozycji na rozwiązywanie problemu

systemowego. W fazie decyzyjnej mediator zarządza priorytetyzacją działań naprawczych

(Remediations) i dba o to, by kluczowe decyzje dotyczące zmian w architekturze zostały

„zamrożone” w formie ADR (Architecture Decision Records) – dokumentów pełniących funkcję

artefaktów granicznych, które synchronizują zrozumienie techniczne i biznesowe. Cały proces

mediator zamyka analizą poincydentalną (Blameless Postmortem), której celem jest wypracowanie

wspólnych wniosków oraz wdrożenie mechanizmów zapobiegawczych na przyszłość.

Dlaczego to działa: Kultura bez orzekania o winie oraz bezpieczeństwo psychologiczne stanowią

fundament uczenia się organizacji; gdy zespół ma pewność, że zgłoszenie błędu nie spotka się z

karą, unika ukrywania problemów, co jest kluczowe dla szybkiej diagnozy i naprawy. Podejście to,

zaczerpnięte z lotnictwa i medycyny, a wdrożone w IT przez SRE, transformuje awarię z

destrukcyjnego konfliktu w systemową lekcję, która zwiększa odporność organizacji i zapobiega

powielaniu tych samych błędów w przyszłości.

Scenariusz: Opóźnienia i presja terminów

Sytuacja: Klient opóźnia dostarczenie kluczowych materiałów lub akceptacji, jednocześnie

odmawiając przesunięcia finalnego terminu wdrożenia. Zespół deweloperski, próbując nadrobić

stracony czas, pracuje w nadgodzinach, co skutkuje narastającym długiem jakościowym i ryzykiem

wypalenia.

Rola mediatora: Mediator wkracza w proces, aby przekształcić emocjonalną presję w

ustrukturyzowaną negocjację opartą na faktach, rozpoczynając od precyzyjnego zmapowania

zależności, które ścieżki krytyczne są zablokowane przez klienta, a gdzie możliwe jest równoległe

prowadzenie prac alternatywnych. Następnie prowadzi negocjacje kompromisów, stawiając biznes

przed wyborem między redukcją zakresu a przesunięciem daty, przy jednoczesnym zabezpieczeniu

jakości kluczowych funkcjonalności poprzez nienegocjowalne standardy techniczne. Aby ochronić

zespół przed chaosem, mediator wymusza higienę procesu poprzez wprowadzenie twardych

limitów pracy w toku oraz rygorystyczne stosowanie Definicji Gotowości, co uniemożliwia

rozpoczęcie prac nad niedostatecznie zdefiniowanymi zadaniami. Całość dopełnia wdrożenie miar

ochronnych, takich jak bramki jakościowe, które blokują promocję kodu niespełniającego

minimalnych wymogów pokrycia testami, niezależnie od presji zewnętrznej.

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 15 z 36

Dlaczego to działa: Choć presja czasu może krótkoterminowo zwiększyć szybkość pracy, odbywa

się to kosztem jakości i zwiększa liczbę błędów. Mediacja przenosi dyskusję z poziomu

życzeniowego na poziom transakcyjny, uświadamiając interesariuszom, że brak elastyczności w

harmonogramie przy opóźnieniach wejściowych musi zostać zbalansowany zmianą zakresu, aby

uniknąć destrukcji jakości i długu technicznego.

4. Przykładowe case’y nieporozumień

Case: „Dodaj wyszukiwanie” → jak rodzi się nieporozumienie

Zespół rozwija katalog produktów (ponad 500 pozycji). Product Manager (PM) widzi spadek

konwersji: użytkownicy przewijają listę, gubią się i rezygnują. Pada pomysł „dodajmy

wyszukiwanie”.

Ticket w Jira (zły):

Tytuł: Dodaj wyszukiwanie w katalogu produktów

Opis: Przyda się wyszukiwarka produktów.

Termin: Zrób to ASAP.

Jak powstaje nieporozumienie?

Ticket nie opisuje szczegółowo jakiego wyszukiwania oczekujemy, więc ludzie automatycznie

dopowiadają brakujące elementy.

Interpretacja dewelopera:

„Skoro jest dużo danych, to normalnie zrobię wyszukiwanie po stronie serwera.”

„Najprostszy i najczęstszy wariant to wyszukiwanie po nazwie — wystarczy na start.”

„Nie jestem grafikiem, a nie ma żadnych makiet ani projektu UI — więc zrobię prosty, standardowy

widok: pole tekstowe + lista wyników, zgodnie z istniejącym stylem strony.”

Czyli deweloper implementuje:

- endpoint /api/search?query=…

- wyszukiwanie po polu nazwa

- UI: pole wyszukiwania + lista wyników (prosty wygląd na podstawie wyglądu strony)

Interpretacja PM (równie oczywista, lecz tylko dla niego):

- Wyszukiwania po nazwie i opisie;

- Z obsługą literówek (fuzzy);

- Znaki diakrytyczne;

- Sensowny UX na mobile i desktop;

- „Bajery” w UI, które w jego wyobrażeniu są częścią „dobrej wyszukiwarki”, np.: podświetlanie

dopasowań, podpowiedzi/autocomplete, „puste stany” z ilustracją, ładne animacje/feedback przy

ładowaniu, chipy/sugestie („Najczęściej wyszukiwane”).

Problem:

Ticket jest ubogi w opis i dodatkowe materiały, brakuje w nim podstawowych informacji, jak ma

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 16 z 36

działać oraz wyglądać wyszukiwanie. Projekt graficzny nie został dostarczony, więc dev nie ma jak

odgadnąć docelowego UX i nie powinien wchodzić w rolę projektanta.

Moment zderzenia:

Po 2 dniach dev dostarcza „wyszukiwanie”: działa po stronie serwera, działa szybko, jest

„produkcyjne”, UI jest poprawne, ale minimalistyczne i „techniczne”, bo nie było makiet.

PM testuje i mówi:

„OK, ale czemu nie znajduje produktów, gdy słowo jest tylko w opisie?”

„Czemu ‘btuy’ (buty) nic nie zwraca?”

„Na mobile lista wyników wygląda inaczej niż oczekiwaliśmy.”

„I czemu to wygląda tak surowo? Miały być podpowiedzi, highlighty, fajny empty state…”

Dev odpowiada:

„W tickecie było tylko Dodaj wyszukiwanie. Zrobiłem wyszukiwanie po stronie serwera na

podstawie nazwy produktu — najbardziej standardowe.”

„Nie było żadnych makiet ani wymagań UX, a ja nie jestem grafikiem — więc zrobiłem prosty,

domyślny widok, żeby dowieźć funkcjonalność.”

I tu zaczyna się klasyczny konflikt:

PM: „Ale to nie rozwiązuje problemu użytkownika.”

Dev: „Ale ja nie mogłem wiedzieć, że to ma być coś więcej.”

Konsekwencje (realne i bolesne):

1) Strata czasu i przerywanie pracy - doprecyzowanie wymagań dopiero po wdrożeniu: „złapmy 15

minut”, „kto pamięta o co chodziło”, „wyślijcie linki do ustaleń”, odrywanie ludzi od bieżących

zadań.

2) Rework - teraz trzeba: rozszerzyć logikę wyszukiwania o ‘opis’, dogadać ranking wyników,

dorobić scenariusze „brak wyników”, „literówki”, „znaki diakrytyczne”, dopasować UI/UX,

zorganizować lub doprojektować warstwę graficzną/UX, itd.

3) Frustracja i spadek morale - dev czuje, że „dowozi i dostaje po głowie”, PM czuje, że „zespół nie

dowozi wartości”: zespół traci zaufanie do ticketów → rośnie ostrożność i spada tempo pracy.

4) Dług komunikacyjny - zaczyna się ukryta praca: przeszukiwanie Slacka/e-maili, „co autor miał na

myśli”, robienie „mini-analizy” przed każdym zadaniem, więcej spotkań, mniej kodu.

Dlaczego to się wydarzyło:

- Brak kontekstu biznesowego („dlaczego?”) — dev nie wie, czy to UX-usprawnienie, czy krytyczny

element konwersji.

- Brak celu i definicji „done” — nie wiadomo, co ma być mierzalnym efektem.

- Brak zakresu — „wyszukiwanie” może znaczyć 10 różnych rzeczy.

- Brak kryteriów akceptacji — nie ma testów narracyjnych, które od razu ujawniają różnice

interpretacji.

- Brak projektu UI/UX — ticket nie mówi, czy oczekujemy „minimalnej funkcji” czy dopracowanego

doświadczenia.

Jak się przed tym bronić:

Ticket nie trafia do realizacji, jeśli brakuje: kontekstu biznesowego, celu (co ma się poprawić u

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 17 z 36

użytkownika), zakresu, kryteria akceptacji (min. 2–3 scenariusze), Definition of Ready, makiet /

decyzji UX, linków do zasobów.

Nawet czytając ten przykład, można zrozumieć ticket inaczej. Problem nie polega na tym, że ktoś

był niekompetentny albo złośliwy. Problem polega na tym, że język bez kontekstu jest

wieloznaczny. Weźmy tytuł: „Dodaj wyszukiwanie w katalogu produktów”. Nawet po tym case’ie

różni Czytelnicy mogą (zupełnie sensownie!) wyobrazić sobie różne rzeczy:

Czytelnik A (UI/UX):

„Wyszukiwarka to przede wszystkim UX: podpowiedzi, highlight, puste stany, animacje — bez

makiet nie da się tego dobrze zrobić.”

-> I to też jest racjonalne oczekiwanie, jeśli ktoś myśli o jakości doświadczenia.

Czytelnik B (Tester):

„Bez kryteriów akceptacji nie wiem, co testować: Czy są podpowiedzi? Co z brakiem wyników? Jak

wygląda empty state? Jakie są reguły dopasowania?”

-> Brak „Definition of Done”.

Czytelnik C (Klient):

„Bardzo nie lubię niepotrzebnych animacji. Wyszukiwanie ma być przede wszystkim szybkie i

skuteczne.”

-> Wizja PM zderza się z faktycznymi oczekiwaniami klientów.

To właśnie pokazuje, dlaczego „oczywiste” wymagania są najdroższe: dopóki nie zostaną zapisane,

istnieją tylko w czyjejś głowie — a każdy ma inną.

Jak powinno wyglądać dobre zgłoszenie:

Tytuł: Wyszukiwanie produktów na podstawie projektu UI

Opis zadania:

W katalogu mamy >500 produktów. Z analityki i feedbacku wynika spadek konwersji: użytkownicy

przewijają listę, gubią się i rezygnują. Wyszukiwanie ma skrócić czas dotarcia do właściwego

produktu i zmniejszyć liczbę porzuceń na etapie wyboru produktu.

Cel:

Użytkownik ma móc szybko znaleźć produkt po nazwie lub opisie w katalogu na mobile i desktop.

KPI (Key Performance Indicators) - po wdrożeniu, do weryfikacji przez PM:

- spadek % sesji zakończonych na stronie katalogu,

- wzrost współczynnika klikalności w listę produktów po użyciu wyszukiwarki,

- zmniejszenie średniego czasu do pierwszego kliknięcia w produkt.

Zakres:

- wyszukiwanie po nazwie i opisie produktu,

- obsługa znaków diakrytycznych (np. “żółte” == “zolte”),

- podstawowa tolerancja literówek (fuzzy na poziomie „1–2 błędy”),

- UI na podstawie projektu graficznego (<link do ticketa z projektem graficznym>),

- ranking wyników (preferuj dopasowania w nazwie > w opisie).

Nie wchodzi (poza zakresem tego ticketa):

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 18 z 36

- personalizacja wyników,

- zaawansowane filtry,

- “najczęściej wyszukiwane” i rozbudowane sugestie marketingowe.

Opis funkcjonalny:

- Pole wyszukiwania na górze listy katalogu.

- Wpisanie min. 2 znaków uruchamia wyszukiwanie.

- Wyniki odświeżają listę produktów.

- Wyczyść zapytanie → wraca standardowa lista.

Wymagania techniczne:

- Backend: endpoint do API lub lepsza metoda (do wyboru przez dev)

- Wyszukiwanie po: nazwa oraz opis produktu.

- Case-insensitive.

- Tolerancja literówek, tak aby: “btuy” zwracało “buty”, “zolte” zwracało “żółte”.

- Ranking: dopasowanie w nazwie (najwyżej), dopasowanie w opisie, krótsze dopasowania /

większa zgodność wyżej.

- Wydajność: odpowiedź < 200 ms.

- Bezpieczeństwo: brak ryzyka modyfikacji zapytania poprzez przekazywany tekst wyszukiwania.

Kryteria akceptacji:

A) Nazwa + opis:

Given: produkt ma słowo tylko w opisie

When: wpisuję to słowo w wyszukiwarce

Then: produkt pojawia się w wynikach.

B) Znaki diakrytyczne:

When: wpisuję „zolte”

Then: znajduję produkty z „żółte”.

C) Literówki:

When: wpisuję „btuy”

Then: w wynikach pojawiają się „buty” (lub produkty z „buty” w nazwie/opisie).

D) Empty state:

When: brak wyników

Then: widzę komunikat + przycisk wyczyszczenia i powrotu do listy.

E) Wydajność:

Typowe zapytanie zwraca wyniki szybko (zgodnie z limitem / bez widocznego laga UI).

Definition of Done:

Kod zrecenzowany, testy (minimum Unit Tests dla wyszukiwania), zmiany wdrożone na produkcji,

PM potwierdził kryteria akceptacji, dodane notatki do release / changelog.

Priorytet / Deadline:

Priorytet: High (wpływ na konwersję).

Deadline: np. do końca sprintu X (bo kampania / release).

Zaangażowani:

PM: <imię> (akceptacja UX i kryteriów)

Dev: <imię>

QA: <imię>

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 19 z 36

Case: „Macie 24/7 i reakcję w 15 minut” → a potem drama o

22:30

Firma IT sprzedaje platformę SaaS klientom B2B. Klient (duża organizacja) naciska na „pewność”,

bo system jest krytyczny dla sprzedaży.

Podczas rozmowy sprzedażowej:

Klient: „Potrzebujemy wsparcia 24/7 i reakcji w 15 minut.”

Sprzedawca: „Jasne, mamy 24/7 i reagujemy w 15 minut.”

Brzmi super. Wszyscy są szczęśliwy, że udało się dogadać. Nikt nie dopytuje, co znaczy „reakcja”,

„24/7” i „awaria”.

Jak powstaje nieporozumienie:

Każda strona dopowiada znaczenie po swojemu.

Co myśli klient:

„Reakcja w 15 minut” = problem ma być rozwiązany albo przynajmniej przywrócona

funkcjonalność w 15–30 minut.

„24/7” = „możemy dzwonić zawsze, ktoś działa od razu”.

„Awaria” = „cokolwiek nie działa, jak trzeba (np. eksport raportu, wolne ładowanie, brak e-maili)”.

Co myśli firma IT:

„Reakcja w 15 minut” = czas potwierdzenia zgłoszenia / pierwsza odpowiedź, nie naprawa.

„24/7” = on-call dla incydentów P0/P1 (poziomy help-desk), a nie pełen zespół do wszystkich

tematów.

„Awaria” = tylko „system niedostępny” albo „krytyczna ścieżka biznesowa leży”, a reszta to

standardowe wsparcie w godzinach.

Wszyscy są przekonani, że ich definicja jest normalna i oczywista, bo nie padły definicje ani

przykłady.

Moment zderzenia:

Jest piątek, 22:30. Klient nie może wygenerować raportu miesięcznego (funkcja działa, ale jest

przerywana z powodu długiej odpowiedzi).

Klient dzwoni na „24/7”:

„Nie działa nam raport, to krytyczne. Macie 15 minut reakcji. Prosimy naprawić.”

On-call po 10 minutach odpisuje:

„Potwierdzam incydent, analizujemy. Damy update.”

Naprawa zajmuje 2 godziny (diagnoza, restart usługi, analiza obciążenia).

Klient w poniedziałek:

„Obiecaliście 15 minut, a my staliśmy 2 godziny. To jest złamanie SLA.”

(SLA = Service Level Agreement, czyli umowa gwarantująca określony poziom i jakość usług.)

Zespół IT:

„Przecież zareagowaliśmy w 10 minut. SLA spełnione.”

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 20 z 36

I zaczyna się konflikt, który nie jest „o system”, tylko o… słowa.

Konsekwencje:

- Utrata zaufania: klient zaczyna traktować obietnice jako marketing.

- Eskalacje i polityka: e-maile do dyrektorów, „kto to podpisał?”, spotkania kryzysowe.

- Koszty: rabaty, darmowe miesiące, dodatkowe usługi „żeby załagodzić”.

- Wypalenie on-call: ludzie czują, że są „na telefonie do wszystkiego”.

- Rozjazd sprzedaż ↔ programiści: sprzedaż „sprzedała”, programiści „sprzątają”.

Dlaczego to się wydarzyło:

- Brak wspólnej definicji: reakcja vs rozwiązanie, 24/7 dla czego, co jest incydentem, jak mierzymy

czas.

- Brak przykładów: nikt nie powiedział „podajmy 3 sytuacje i ustalmy, czy to P1 czy P3”.

- Brak handoffu: sprzedaż nie przekazała (albo nie miała) „jak faktycznie działa support”.

Jak się przed tym bronić:

1) SLA Cheat Sheet (dla klienta i wewnętrznie)

Definicje: Response time vs Resolution time

Godziny: co znaczy 24/7

Kanały: telefon/e-mail/portal + co jest oficjalnym zgłoszeniem

Tabela priorytetów: P0/P1/P2/P3 z przykładami

2) Zasada: „Obietnica bez definicji = ryzyko”

Jeśli w rozmowie pada „15 minut”, to automatycznie doprecyzować:

„15 minut na pierwszą odpowiedź czy na przywrócenie działania?”

„Dotyczy to wszystkich zgłoszeń, czy tylko P0/P1?”

3) Pre-sales → delivery handoff, krótka checklista:

Co klient rozumie przez „krytyczne”?

Jakie są godziny pracy supportu?

Co jest absolutnie P0 (np. logowanie, checkout)?

Jakie są oczekiwania co do komunikacji (update co 15/30/60 min)?

4) Podsumowanie po rozmowie, np. na e-mail:

Support 24/7 dotyczy incydentów P0/P1.

Response time: P0/P1: do 15 minut (24/7), P2/P3: w godzinach 9–17 w dni robocze

Czas naprawy: P0: 2 godziny, P1: 6 godzin

Przykłady:

P0: system niedostępny / logowanie nie działa / checkout nie działa

P1: kluczowa funkcja dla większości użytkowników znacząco ograniczona

P2: obejście istnieje, dotyczy części użytkowników

Sposób komunikacji podczas incydentu: update co 30 minut dla P0, co 60 minut dla P1.

Tu nie ma „winnego człowieka” — jest winna wieloznaczność. Dlatego takie ustalenia należy

przekładać na definicje + przykłady — bo inaczej każdy czyta to „po swojemu”. Nawet Czytelnik

tego przykładu może w głowie automatycznie przyjąć różne znaczenia:

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 21 z 36

„Reakcja w 15 minut” = naprawa w 15 minut (bardzo częste myślenie biznesu)

„Reakcja w 15 minut” = ktoś się odezwie i potwierdzi (częste myślenie IT/ops)

„24/7” = pełna obsługa wszystkiego zawsze vs on-call tylko dla krytyków

„Awaria” = cokolwiek nie działa idealnie vs system leży

5. Pomocne materiały

Poniżej znajdują się materiały, które mogą pomóc w ulepszeniu komunikacji i uratować Czytelnika

przed nieprzyjemnymi sytuacjami. Należy mieć na uwadze, że materiały zostały przygotowane na

podstawie prac naukowych oraz doświadczenia, ale Czytelnik powinien je dostosować do własnej

sytuacji, właściwego kontekstu.

5.1. Checklisty mediacji w projektach IT

A) Sygnały ostrzegawcze — zabezpiecz możliwość mediacji, gdy

pojawia się co najmniej jedno z poniższych:

☐ Przegląd przygotowanej funkcjonalności „wisi” > 3 dni bez merytorycznego review.

☐ Zadania krytyczne blokowane > 24 h przez inną rolę/zespół.

☐ Proporcja ponownie otwieranych zadań w sprincie > 10% (lub rośnie kolejny sprint).

☐ Dwie konkurujące wizje architektoniczne bez wspólnego modelu decyzji.

☐ Zmiany zakresu bez korekty budżetu/terminu.

☐ Niespodzianki wdrożeniowe: to, co dowieziono ≠ to, co zlecono.

☐ Napięcie wokół incydentu/awarii.

☐ Symptomy wypalenia: nadgodziny jako norma, rosnący dług jakościowy.

Współpraca nie polega na rywalizacji lub tzw. „spychologii”, a na zrozumieniu i synergii. Obie

strony powinny działać wspólnie i budować zaufanie, aby osiągnąć założone cele i sukces

projektu. I obydwie powinny równie mocno angażować się w te procesy, a w konsekwencji w

osiągnięcie celu. To jest w ich wspólnym interesie.

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 22 z 36

B) Przygotowanie spotkania:

☐ Zbierz fakty i artefakty: backlog, decyzje architektoniczne, logi incydentu, metryki.

☐ Uzgodnij cel spotkania: jaka decyzja / jaki problem ma zniknąć z krytycznej ścieżki (1–2

zdania).

☐ Określ kryteria sukcesu (np. po sesji: zapis decyzji architektonicznej + re-plan sprintu +

właściciele działań).

☐ Wybierz bezpieczną platformę (bez nagrywania; włącz poczekalnie, upewnij się co do

poufności).

☐ Wprowadź reguły spotkania, np. nie „wchodzimy” w słowo, nie krzyczymy, nie obwiniamy,

itp.

C) Artefakty po sesji (żadnych „notatek z rozmów” bez formy):

☐ One-Page Brief – problem, kontekst, dane, podjęte decyzje, kryteria, opcje, wybrana opcja,

konsekwencje.

☐ Zapis decyzji architektonicznej – kontekst, decyzja, konsekwencje, rozważane alternatywy,

status, właściciel.

☐ Definition of Ready/Done – zaktualizowane, ze słownikiem pojęć niejednoznacznych.

☐ Śledzenie działań – właściciel, termin, metryka sukcesu, data przeglądu.

☐ Informacja zwrotna – do uczestników, krótko, rzeczowo, bez nowych tematów.

5.2. Checklista "Użytecznego ticketu":

• Tytuł: Zwięzły i konkretny, w formacie: Czasownik + Przedmiot + Kontekst (np. "Stwórz

przycisk eksportu w panelu administracyjnym").

• Opis problemu: Ogólny opis problemu, stan obecny, stan docelowy, zakres prac.

• Kroki odtworzenia (Dla bugów): Jakie środowisko, wersja aplikacji,

przeglądarka/urządzenie, dokładne kroki, oczekiwania vs aktualnie, częstotliwość.

• Kontekst (Dlaczego): Krótki opis problemu biznesowego lub bólu użytkownika, który

rozwiązuje to zadanie. Odpowiada na pytanie: "Dlaczego to robimy?".

• Cel (Co): Jasno określony, oczekiwany rezultat. Co ma się zmienić po wykonaniu zadania?

• Definition of Done (DoD): Link do ogólnozespołowej definicji ukończenia, stanowiącej

kontrakt jakościowy (np. kod przetestowany, zrecenzowany, zintegrowany,

udokumentowany), który chroni przed syndromem "u mnie działa".

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 23 z 36

• Priorytet i deadline.

• Osoby odpowiedzialne: Kto odpowiada za wykonanie, kto za testy, kto za akceptacje, itd.

• Dodatkowe materiały: Np. link do makiety projektu, zrzuty ekranu problemu.

5.3. Manifest komunikacji (do wklejenia w README zespołu),

przykładowy:

Cel: ustalić jeden, wspólny „kontrakt komunikacyjny” zespołu, który ogranicza nieporozumienia i

koszty koordynacji.

1. “Oczywiste” jest najdroższe – bez kontekstu każdy dopowiada znaczenie po swojemu.

2. Uzgadniaj definicje + przykłady, zanim obiecasz/zakodujesz. Jedna obietnica bez definicji =

ryzyko.

3. Ticket to kontrakt, nie notatka “ASAP”. Nie zaczynamy kodu, jeśli ticket jest niegotowy (DoR

chroni czas i jakość).

4. Unikaj “archeologii informacyjnej” – decyzje i kontekst lądują w jednym miejscu, nie w 5

narzędziach.

5. Dbaj o bezpieczeństwo psychologiczne – bez niego ludzie przestają mówić o ryzykach.

6. Projektuj komunikację jak architekturę – struktura zespołów odbija się w systemie.

5.4. Polityka kanałów (koniec “przełączania kontekstu”),

przykładowa:

Cel: Ograniczyć koszty koordynacji i ciągłego „szukania, gdzie to było”. Warto przyjąć prostą

politykę: każdy typ informacji ma swoje miejsce, a rozmowy w kanałach ulotnych zawsze kończą

się linkiem do źródła prawdy.

Slack/Teams służy do szybkich pytań i uzgodnień operacyjnych („kto?”, „na kiedy?”, „co

blokuje?”), ale ustalenia, które mają przetrwać dłużej niż wątek, powinny zostać podpięte linkiem

do ticketu lub dokumentu.

Jira jest miejscem na zakres pracy: opis problemu, cel, kryteria akceptacji, DoR/DoD, priorytet,

zależności oraz decyzje dotyczące implementacji.

Confluence / dokumentacja przechowuje wiedzę długowieczną: decyzje architektoniczne i ich

uzasadnienie, słownik pojęć, standardy, runbooki oraz procedury operacyjne — wszystko to, co

powinno być łatwe do odtworzenia po miesiącu.

E-mail zostaje do komunikacji formalnej z klientem oraz do podsumowań ustaleń, zwłaszcza gdy

potrzebna jest ścieżka audytowa lub jednoznaczny zapis „co uzgodniliśmy” (również z linkami do

ticketów i dokumentów).

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 24 z 36

5.5. “Follow-up po rozmowie sprzedażowej” – szablon e-maila /

notatki, przykładowy:

Temat: Podsumowanie ustaleń dot. wsparcia

Dziękuję za rozmowę. Dla jasności spisuję ustalenia, żebyśmy wszyscy rozumieli je tak samo:

1) Zakres 24/7:

- 24/7 dotyczy: […]

- Poza zakresem 24/7: […]

2) “Reakcja w 15 minut” oznacza:

- [pierwsza odpowiedź] w ciągu […]

- a nie [czas naprawy] (ten jest opisany w pkt 3)

3) Cele naprawy:

- P0: […]

- P1: […]

4) Poziomy ważności + przykłady (P0–P3):

- […]

5) Komunikacja w trakcie incydentu:

- aktualizacje: P0 co […], P1 co […]

Jeśli coś rozumiecie inaczej – dajcie znać, doprecyzujemy.

5.6. Karta lidera — codzienne zachowania budujące

bezpieczeństwo psychologiczne:

Cel: modelować postawę ciekawości, pokory i wspólnej odpowiedzialności. Lider nie „ma zawsze

rację” — lider tworzy warunki, w których zespół szybciej mówi prawdę, wcześniej zgłasza ryzyka i

lepiej myśli.

Sygnały w języku (gotowe zdania do użycia):

„Nie wiem — co o tym myślicie?”

„Mogę się mylić — jakie mamy inne opcje?”

„Co jest tu niejasne lub ryzykowne?”

„Kto widzi słabe punkty tego planu?”

Mikro-zachowania (1–2 minuty, ale robią różnicę):

Normalizuj błędy: zacznij od własnych: „Wczoraj źle założyłem X — poprawmy.”

Oddziel osobę od problemu: krytykuj pomysł, nie człowieka.

Doceniaj zgłoszenia ryzyka: dziękuj za „złe wiadomości” publicznie.

Domykaj znaczenia: „Podsumuję: decyzja A, powód B, ryzyko C, następny krok D.”

Dawaj zgodę na pytania: „Jeśli coś jest niejasne, wolę 5 pytań teraz niż tydzień reworku.”

Czego unikać (bo zabija bezpieczeństwo):

Ironii i zawstydzania („serio o to pytasz?”).

Karania za eskalację („po co alarmujesz?”).

Przerywania i kończenia dyskusji autorytetem („bo tak”).

Publicznego rozliczania błędów bez kontekstu (to uczy ukrywania problemów).

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 25 z 36

5.7. „Dług komunikacyjny” — mierzalny wskaźnik

Cel: uchwycić koszt „ukrytej pracy” związanej z niejasnymi ustaleniami, rozproszoną wiedzą i różną

interpretacją wymagań — w sposób prosty, powtarzalny i porównywalny sprint do sprintu.

Prosty tracker (na 1 sprint, 10 min dziennie):

Zbieramy trzy liczniki w jednym miejscu (np. Confluence / Google Sheet / komentarz do sprintu).

Nie chodzi o „polowanie na winnych”, tylko o pomiar problemów.

„Kto pamięta o co chodziło?” (Recall count)

Liczba sytuacji, w których zespół musiał odtwarzać kontekst, bo nie był zapisany.

Zasada liczenia: każde „odtwarzanie kontekstu” = 1, niezależnie od długości dyskusji.

Zwroty z QA (Quality Assurance) / UAT (User Acceptance Testing) przez różną interpretację

kryteriów akceptacji (AC mismatch)

Liczba ticketów, które wróciły nie dlatego, że „coś nie działa”, tylko dlatego, że inne osoby inaczej

rozumiały zakres / kryteria akceptacji.

Zasada liczenia: wraca z powodu „nie tak miało działać” = 1.

Poszukiwanie ustaleń po kanałach (Evidence hunt)

Liczba przypadków, gdy trzeba było szukać linków, decyzji lub „kto co ustalił” w Slacku/e-

mailach/dokumentach, bo nie było jednego źródła prawdy.

Zasada liczenia: każde „szukanie źródła decyzji” = 1.

Jak raportować (na koniec sprintu):

Wynik sprintu: Recall + AC mismatch + Evidence hunt = X

2–3 zdania: gdzie boli najbardziej i dlaczego (np. brak makiet, brak decyzji architektonicznej, brak

DoR/DoD, rozproszone decyzje).

Interpretacja:

Wzrost wskaźnika oznacza, że rośnie koszt koordynacji i ryzyko reworku (czyli „dług

komunikacyjny”). Spadek oznacza, że decyzje są lepiej domykane, a zespół mniej czasu traci na

odtwarzanie kontekstu.

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 26 z 36

5.8. Pakiet komunikacji incydentowej

A) Slack — start incydentu (wewnętrznie)

Cel: w 2 minuty ustawić wspólny kontekst, właściciela, rytm aktualizacji i jedno źródło prawdy.

Szablon wiadomości startowej:

[INCYDENT] P{1-4} — {krótki opis, max 1 zdanie}

Wpływ:

- Kto: {np. wszyscy użytkownicy / część klientów / region}

- Co: {np. checkout nie działa / logowanie zwraca 500 / opóźnienia > 30s}

- Skala: {~X% ruchu / X klientów / X zamówień}

Start: {HH:MM} (czas lokalny)

Koordynator: @{osoba}

Dokumentowanie: @{osoba}

Komunikacja: @{osoba}

Status: Weryfikacja

Kluczowe linki:

- Panel: {link}

- Logi / śledzenie: {link}

- Ticket: {link}

- Podręcznik operacyjny: {link}

- Oś czasu: {link}

Rytm aktualizacji:

- Następny update: {HH:MM}

- Potem co {30/60} min lub po istotnej zmianie statusu

Zasady:

- Fakty > opinie. Hipotezy oznaczamy jako "H:".

- Wszystkie decyzje i zmiany wrzucamy tutaj.

- Jeśli robisz zmianę: napisz co, gdzie, kiedy, kto.

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 27 z 36

B) Slack — update wewnętrzny (cykliczny)

Cel: nie dopuścić do chaosu i dublowania pracy.

Szablon:

[AKTUALIZACJA INCYDENTU] #{N} — {HH:MM}

Status: Badanie / Łagodzenie skutków / Monitorowanie / Rozwiązane

Wpływ (aktualnie): {bez zmian / wzrósł / zmalał} — {konkret}

Co wiemy (fakty):

- {F1}

- {F2}

Hipotezy (H):

- {H1} (właściciel @{...})

- {H2} (właściciel @{...})

Co robimy teraz:

- {działanie} — właściciel @{...} — ETA {~min}

- {działanie} — właściciel @{...}

Zmiany wprowadzone od ostatniej aktualizacji:

- {co, gdzie, kto, HH:MM} (np. rollback usługi X do v1.2)

Ryzyka / blokery:

- {np. brak dostępu do logów partnera, czekamy na…}

Następny update: {HH:MM}

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 28 z 36

C) Do klienta — update cykliczny (zewnętrznie)

Cel: klient ma czuć, że sytuacja jest pod kontrolą, nawet jeśli nie ma jeszcze przyczyny. Minimum:

jasny impact, status, co wiemy, co robimy, kiedy kolejny update.

Szablon ogólny:

Temat: Incydent {P1/P2} — {krótki opis} — Aktualizacja #{N} ({HH:MM})

Dzień dobry,

Status: Badanie / Łagodzenie skutków / Monitorowanie / Rozwiązanie

Wpływ:

- {kto i co} (np. część użytkowników nie może finalizować zamówień)

- {od kiedy} (np. od 12:40)

Co wiemy na tę chwilę:

- {1–3 fakty, bez spekulacji}

Co robimy teraz:

- {1–3 działania w toku}

Obejście (jeśli istnieje):

- {np. rekomendujemy X / wdrożyliśmy workaround Y}

Kolejna aktualizacja:

- Najpóźniej o {HH:MM} lub wcześniej, jeśli status się zmieni.

Pozdrawiam,

{Imię i nazwisko}

{Rola / Zespół}

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 29 z 36

D) „Po incydencie” — mini-podsumowanie bez szukania winnych

Cel: domknąć temat, nie zostawiać „niedopowiedzianej historii” i zapobiec powtórce. Krótko,

konkretnie, systemowo.

Kiedy: najlepiej w ciągu 24–72h.

Szablon (wewnętrznie + opcjonalnie do klienta w wersji okrojonej):

[PO INCYDENCIE] {nazwa/incydent} — podsumowanie

1) Podsumowanie (1–2 zdania)

- Co się stało i jaki był skutek dla użytkowników.

2) Wpływ

- Zakres: {kto/ile}

- Czas trwania: {od–do}

- Największa szkoda: {np. utrata przychodów, opóźnienia, niedostępność}

3) Oś czasu (kluczowe momenty)

- HH:MM — wykrycie / alert

- HH:MM — eskalacja / war room

- HH:MM — łagodzenie / rollback

- HH:MM — stabilizacja

- HH:MM — zamknięcie

4) Przyczyna źródłowa (Root Cause) + czynniki sprzyjające

- Przyczyna: {krótko i konkretnie}

- Czynniki wpływające: {np. brak circuit breaker, zbyt agresywne retry, brak alarmu,

brak testu}

5) Co zadziałało dobrze

- {np. szybka eskalacja, dobre dashboardy, sprawny rollback}

6) Co poprawiamy (Remediations)

- {akcja} — właściciel @{...} — termin {data}

- {akcja} — właściciel @{...} — termin {data}

7) Zmiany w regułach / definicjach

- {np. aktualizacja runbooka, zmiana SLO/SLA, progi alarmów, procedura deploy}

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 30 z 36

Podsumowanie

W projektach IT nieprecyzyjna komunikacja na starcie rzadko kończy się tylko drobnym

nieporozumieniem — zwykle przeradza się w kosztowną zmianę lub błąd odkrywany dopiero

później. Jak wykazały badania m.in. NASA, koszt naprawy błędu wynikającego z nieporozumień w

wymaganiach szybko rośnie w kolejnych fazach projektu, osiągając w fazie operacyjnej poziom

zwykle liczony w dziesiątkach razy, a w ekstremalnych przypadkach – nawet w tysiącach w

porównaniu z etapem definicji. Dlatego walka z „iluzją przejrzystości” – przekonaniem, że nasze

intencje są dla innych tak samo jasne jak dla nas samych – staje się priorytetem dla każdego

zespołu.

Kluczem do sukcesu jest przejście od pasywnego przesyłania informacji do aktywnego procesu

„uziemiania”, czyli budowania wspólnego kontekstu, w którym nadawca i odbiorca nie tylko

wymieniają dane, ale weryfikują ich zrozumienie. W praktyce oznacza to wdrożenie precyzyjnych

standardów, takich jak Definition of Ready i Definition of Done. Działają one jak „bramki jakości”,

zapobiegając sytuacji, w której niejasne zadania destabilizują architekturę systemu lub generują

fałszywe poczucie postępu.

Ostatecznie jednak żadne narzędzie ani proces nie zadziała bez odpowiedniej kultury

organizacyjnej. Fundamentem skutecznej komunikacji jest bezpieczeństwo psychologiczne, które

pozwala pracownikom zgłaszać wątpliwości i błędy bez lęku przed karą. W świecie, gdzie presja

czasu często wymusza ryzykowne skróty, rolą lidera jest zamiana emocjonalnych konfliktów na

transakcyjne kompromisy dotyczące zakresu i jakości, co chroni zespół przed wypaleniem i

chaosem decyzyjnym. Pamiętajmy, że zgodnie z Prawem Conwaya, systemy, które tworzymy, są

odzwierciedleniem struktury naszej komunikacji – jeśli chcemy budować spójne oprogramowanie,

musimy najpierw zbudować spójny zespół.

https://tomecki.studio/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 31 z 36

Tomasz Namyslo — jestem senior web/mobile developerem

i konsultantem IT z wieloletnim doświadczeniem w tworzeniu

i ulepszaniu sklepów internetowych oraz aplikacji mobilnych i webowych.

Pomagam firmom dowozić software przewidywalnie: mniej chaosu, mniej

poprawek, krótszy pipeline i wydajniejszy kod, który nie mści się po kwartale.

Traktuję współpracę jak partnerstwo. Ja biorę odpowiedzialność za inżynierię

i dowożenie, a po drugiej stronie oczekuję takiego samego zaangażowania, decyzyjności

i profesjonalnego podejścia. Ustalamy cel, zasady i rytm pracy — i trzymamy się ustaleń.

Kiedy nie jestem dobrym wyborem:

Jeśli priorytetem jest „tanio i szybko” i akceptujesz, że po drodze rośnie dług

technologiczny i architektoniczny. Pracuję tak, żeby oszczędzać czas i pieniądze

w perspektywie miesięcy i lat, a nie tylko „dowieźć sprint”.

tomek@tomecki.studio

https://tomecki.studio/

https://linkedin.com/in/tomasz-namyslo/

12+
lat

doświadczenia

20+

certyfikatów
w tym z Cisco
i Securitum

130+

projektów
w tym 70%
dla agencji

„Mam przyjemność regularnie współpracować z Tomkiem przy różnych projektach

stron i sklepów internetowych dla moich klientów. Tomek jest znakomitym

programistą. Kiedy powierzam mu projekt, nie mam wątpliwości, że zostanie on

zrealizowany z najwyższą precyzją. Niezależnie od tego, czy przedstawiam mu

różnorodne pomysły i potrzeby, zawsze potrafi je zrealizować. Na każdym etapie

projektu zapewnia cenne wskazówki i na bieżąco informuje wszystkich

zainteresowanych. Doskonale współpracuje również z grafikami, realizując wizję

projektu. Wiedza Tomka jest nieocenionym atutem dla każdej firmy. Gorąco go

polecam :)”

Maciej Zawieja

„Stanowczo Polecam "tomeckiStudio"!!! Pan Tomasz stworzył dla mnie nową

stronę firmową (sitandtalk.pl). Całość procesu wykonana została bardzo

profesjonalnie, z dobrze wykonanym badaniem potrzeb i oczekiwań. Strona w

stosunku 1:1 odpowiada mojej wizji i zamówieniu. Usługa wykonana sprawnie,

bez zbędnych opóźnień i jakichkolwiek problemów.”

Patrycja Kubacz

https://tomecki.studio/
https://www.google.com/search?q=tomeckistudio+it+services&oq=tomeckist&gs_lcrp=EgZjaHJvbWUqBggAEEUYOzIGCAAQRRg7MgYIARBFGDkyBggCEEUYPDIGCAMQRRg9MgYIBBBFGDwyBggFEEUYQTIGCAYQRRhBMgYIBxBFGEHSAQgxNjM4ajBqMagCALACAA&sourceid=chrome&ie=UTF-8&sei=kKSAafvoG-KkhbIPvaq5uAg#lrd=0xf5aae27940d7ddd:0x84b689286ca739e7,1,,,,
https://share.google/5FRGL3YnF9dCWBVka
https://share.google/mm0mgqIDij6AWm5Uo

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 32 z 36

Referencje

[1] K. Wnuk and B. Regnell, Requirements are slipping through the gaps — A case study on causes &
effects of communication gaps in large-scale software development. 2011, pp. 37-46.

[2] B. Wróbel, "Rola komunikacji w zarządzaniu projektami," (in pol), The role of communication in
project management, no. 3, pp. 119-129, 2007. [Online]. Available:
http://www.ejournals.eu/sj/index.php/ZP/article/view/1023.

[3] R. Haleliuk. "Cybersecurity has a communication problem." Venture in Security.
https://ventureinsecurity.net/p/cybersecurity-has-a-communication (accessed 12, 2025).

[4] Kaspersky, "Fluent in Infosec: Are c-level executives and IT security managers on the same page?,"
2023. [Online]. Available: https://www.kaspersky.com/blog/speak-fluent-infosec-2023/

[5] M. Gorin, "Writing Engineering Tasks as a Team Process." [Online]. Available: https://maxim-
gorin.medium.com/writing-engineering-tasks-as-a-team-process-afccc9767eb4

[6] M. Watson, "Top 7 Communication Problems in Software Development and How to Solve Them,"
ed: Full Scale, 2025.

[7] H. Khanna, "The Collaboration Paradox: Why Productivity Tools Made Work Harder." [Online].
Available: https://foresight.sparklin.com/collaboration-paradox-productivity-tools-failing-
knowledge-work

[8] B. Wolfe, "Too Many Tools, Too Little Time: How Context Switching Is Killing Team Flow," 2025.
[Online]. Available: https://lokalise.com/blog/blog-tool-fatigue-productivity-report/.

[9] T. Gilovich, K. Savitsky, and V. H. Medvec, "The illusion of transparency: biased assessments of
others' ability to read one's emotional states," (in eng), J Pers Soc Psychol, vol. 75, no. 2, pp. 332-46,
Aug 1998, doi: 10.1037//0022-3514.75.2.332.

[10] Anonymous. "Communication Barriers." LibreTexts Business.
https://biz.libretexts.org/Bookshelves/Management/Principles_of_Management/12%3A_Communi
cation_in_Organizations/12.4%3A_Communication_Barriers (accessed 12, 2025).

[11] C. D. Cramton, "The Mutual Knowledge Problem and Its Consequences for Dispersed Collaboration,"
2001. [Online]. Available: https://doi.org/10.1287/orsc.12.3.346.10098.

[12] B. Curtis, H. Krasner, and N. Iscoe, "A Field Study of the Software Design Process for Large Systems,"
Commun. ACM, vol. 31, pp. 1268-1287, 11/01 1988, doi: 10.1145/50087.50089.

[13] H. C. Herbert and B. Susan, "Grounding in communication," 1991. [Online]. Available:
https://api.semanticscholar.org/CorpusID:153811205.

[14] M. Fairlie, "Why Speaking in Jargon Doesn’t Make You Look Smarter." [Online]. Available:
https://www.business.com/articles/cut-the-code-why-speaking-in-technical-jargon-is-not-making-
you-look-smarter/

[15] K. Alexander, "Jargon Conundrum: Its Effect on Workplace Communication," ed: The Survey
Initiative, 2024.

[16] N. Staff, "Why Corporate Jargon Is Bad for Business," ed: NeuroLeadership Institute, 2023.
[17] H. C. Shulman, G. N. Dixon, O. M. Bullock, and D. Colón Amill, "The effects of jargon on processing

fluency, self-perceptions, and scientific engagement," Journal of Language and Social Psychology,
vol. 39, no. 5-6, pp. 579-597, 2020, doi: 10.1177/0261927X20902177.

[18] C. s. E. Team, "Too many Slack channels? Here's how to manage tech anxiety at work," D. C.
Mosunic, Ed., ed: Calm, 2025.

[19] R. R. a. A. G. Rob Cross. (2016) Collaborative Overload. Available: https://www.robcross.org/wp-
content/uploads/2021/04/HBR-Collaborative-Overload.pdf

[20] P.-L. Rodrigue, "How Team Stress Hurts Delivery + What to Do," ed: Axify, 2025.
[21] V. Terrón, J. Mejia, and M. Terron-Hernández, "A Systematic Literature Review on Technical Debt in

Software Development: Types, Tools, and Concerns," International Journal of Combinatorial
Optimization Problems and Informatics, vol. 16, pp. 288-302, 10/12 2025, doi:
10.61467/2007.1558.2025.v16i4.1150.

https://tomecki.studio/
http://www.ejournals.eu/sj/index.php/ZP/article/view/1023
https://ventureinsecurity.net/p/cybersecurity-has-a-communication
https://www.kaspersky.com/blog/speak-fluent-infosec-2023/
https://maxim-gorin.medium.com/writing-engineering-tasks-as-a-team-process-afccc9767eb4
https://maxim-gorin.medium.com/writing-engineering-tasks-as-a-team-process-afccc9767eb4
https://foresight.sparklin.com/collaboration-paradox-productivity-tools-failing-knowledge-work
https://foresight.sparklin.com/collaboration-paradox-productivity-tools-failing-knowledge-work
https://lokalise.com/blog/blog-tool-fatigue-productivity-report/
https://biz.libretexts.org/Bookshelves/Management/Principles_of_Management/12%3A_Communication_in_Organizations/12.4%3A_Communication_Barriers
https://biz.libretexts.org/Bookshelves/Management/Principles_of_Management/12%3A_Communication_in_Organizations/12.4%3A_Communication_Barriers
https://doi.org/10.1287/orsc.12.3.346.10098
https://api.semanticscholar.org/CorpusID:153811205
https://www.business.com/articles/cut-the-code-why-speaking-in-technical-jargon-is-not-making-you-look-smarter/
https://www.business.com/articles/cut-the-code-why-speaking-in-technical-jargon-is-not-making-you-look-smarter/
https://www.robcross.org/wp-content/uploads/2021/04/HBR-Collaborative-Overload.pdf
https://www.robcross.org/wp-content/uploads/2021/04/HBR-Collaborative-Overload.pdf

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 33 z 36

[22] R. Westrum, "A typology of organisational cultures," Quality and Safety in Health Care, vol. 13, no.
suppl 2, p. ii22, 2004, doi: 10.1136/qshc.2003.009522.

[23] Microsoft, "What is Conway’s Law?," ed: Microsoft, 2024.
[24] M. Odusola, "Conway’s Law Explained," ed: splunk, 2023.
[25] M. P. Matthew Skelton, "Conway’s Law: Critical for Efficient Team Design in Tech," ed: IT Revolution,

2020.
[26] A. Franzen, "Team Topologies - The Reverse Conway Manoeuvre," ed: AGILE Analytics, 2022.
[27] Graph, "Reverse Conway Maneuver," ed: Graph, 2025.
[28] S. Ferreira, J. Collofello, D. Shunk, and G. Mackulak, "Understanding the effects of requirements

volatility in software engineering by using analytical modeling and software process simulation,"
Journal of Systems and Software, vol. 82, no. 10, pp. 1568-1577, 2009/10/01/ 2009, doi:
https://doi.org/10.1016/j.jss.2009.03.014.

[29] Z. D. a. N. Nur, "A Study of the Impact of Requirements Volatility on Software Project Performance,"
2002. [Online]. Available: https://opus.lib.uts.edu.au/bitstream/10453/2350/3/2004003534.pdf.

[30] A. F. Vincenzo Gervasi, Didar Zowghi, and Paola Spoletini, "Ambiguity in Requirements Engineering:
Towards a Unifying Framework." [Online]. Available:
https://arpi.unipi.it/bitstream/11568/1029138/1/Ambiguity_in_RE.pdf.

[31] M. Kuutila, M. Mäntylä, U. Farooq, and M. Claes, "Time pressure in software engineering: A
systematic review," Information and Software Technology, vol. 121, p. 106257, 2020/05/01/ 2020,
doi: https://doi.org/10.1016/j.infsof.2020.106257.

[32] C. Ribeiro and D. Berry, "The prevalence and severity of persistent ambiguity in software
requirements specifications: Is a special effort needed to find them?," Science of Computer
Programming, vol. 195, p. 102472, 2020/09/01/ 2020, doi:
https://doi.org/10.1016/j.scico.2020.102472.

[33] M. L. Aleksandar Bajceta, Wasif Afzal, Pernilla Lindberg and Markus Bohlin, "Using NLP tools to
detect ambiguities in system requirements - A comparison study." [Online]. Available:
https://www.es.mdu.se/pdf_publications/6390.pdf.

[34] D. Basten, M. Müller, M. Ott, O. Pankratz, and C. Rosenkranz, "Impact of time pressure on software
quality: A laboratory experiment on a game-theoretical model," PLOS ONE, vol. 16, no. 1, p.
e0245599, 2021, doi: 10.1371/journal.pone.0245599.

[35] J. D. H. a. A. Mockus, "An Empirical Study of Speed and Communication in Globally Distributed
Software Development," 2003. [Online]. Available: https://www.st.cs.uni-
saarland.de/edu/empirical-se/2006/PDFs/herbsleb03.pdf.

[36] C. B. Alberto Bacchelli, "Expectations, Outcomes, and Challenges Of Modern Code Review."
[Online]. Available: https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/ICSE202013-codereview.pdf.

[37] J. D. Jonette M. Stecklein, Brandon Dick, Bill Haskins, Randy Lovell, Gregory Moroney, "Error Cost
Escalation Through the Project Life Cycle," 2004. [Online]. Available:
https://ntrs.nasa.gov/citations/20100036670.

[38] M. Buenning, "How Human Error Relates to Cybersecurity Risks," ed: ninjaOne, 2025.
[39] J. Gregory, "Communication platforms play a major role in data breach risks," ed: IBM, 2025.
[40] krebsonsecurity, "Tech Firm Ubiquiti Suffers $46M Cyberheist," ed, 2015.
[41] erp-view, "Dług technologiczny w systemach ERP – ukryte wyzwanie dla organizacji," ed: erp-view,

2025.
[42] R. Williams, "Reduce and Manage Technical Debt," ed: Gartner, 2025.
[43] F. A. Administration. "Boeing 747-206B and Boeing 747-121." Federal Aviation Administration.

https://www.faa.gov/lessons_learned/transport_airplane/accidents/PH-BUF (accessed.
[44] A. Alliance, "Three Amigos," ed. Agile Alliance, 2016.
[45] N. Reddy, "What are the Three Amigos in Agile? A Complete Guide," ed: Star Agile, 2025.

https://tomecki.studio/
https://doi.org/10.1016/j.jss.2009.03.014
https://opus.lib.uts.edu.au/bitstream/10453/2350/3/2004003534.pdf
https://arpi.unipi.it/bitstream/11568/1029138/1/Ambiguity_in_RE.pdf
https://doi.org/10.1016/j.infsof.2020.106257
https://doi.org/10.1016/j.scico.2020.102472
https://www.es.mdu.se/pdf_publications/6390.pdf
https://www.st.cs.uni-saarland.de/edu/empirical-se/2006/PDFs/herbsleb03.pdf
https://www.st.cs.uni-saarland.de/edu/empirical-se/2006/PDFs/herbsleb03.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ICSE202013-codereview.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ICSE202013-codereview.pdf
https://ntrs.nasa.gov/citations/20100036670
https://www.faa.gov/lessons_learned/transport_airplane/accidents/PH-BUF

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 34 z 36

[46] M. Gorin, "Ready vs Done: The Underrated Process That Keeps Work Clean." [Online]. Available:
https://maxim-gorin.medium.com/tired-of-tasks-starting-half-baked-or-closing-half-done-learn-
how-dor-and-dod-keep-your-team-aligne-b912dfdf828c

[47] R. Wohlrab, P. Pelliccione, E. Knauss, and M. Larsson, "Boundary objects and their use in agile
systems engineering," Journal of Software: Evolution and Process, vol. 31, no. 5, p. e2166,
2019/05/01 2019, doi: https://doi.org/10.1002/smr.2166.

[48] C. K. De Dreu and L. R. Weingart, "Task versus relationship conflict, team performance, and team
member satisfaction: a meta-analysis," (in eng), J Appl Psychol, vol. 88, no. 4, pp. 741-9, Aug 2003,
doi: 10.1037/0021-9010.88.4.741.

[49] J. L. a. S. Lueder, "Postmortem Culture: Learning from Failure," in Site Reliability Engineering, G. O.
Connor Ed.: Google, 2016.

[50] A. Edmondson, "Psychological Safety and Learning Behavior in Work Teams," Administrative Science
Quarterly, vol. 44, no. 2, pp. 350-383, 1999, doi: 10.2307/2666999.

Bibliografia

[51] S. Alliance, "Everything You Need to Know About Acceptance Criteria." [Online]. Available:

https://resources.scrumalliance.org/Article/need-know-acceptance-criteria
[52] S. Alliance, "Definition of Done vs. Definition of Ready." [Online]. Available:

https://resources.scrumalliance.org/Article/definition-vs-ready
[53] T. Asana, "Jak utworzyć brief projektu w 7 krokach," vol. 2026, ed: Asana, 2026. [Online]. Available:

https://asana.com/pl/resources/design-brief
[54] Atlassian, "Acceptance criteria: examples and best practices," vol. 2025, ed: Atlassian. [Online].

Available: https://www.atlassian.com/work-management/project-management/acceptance-criteria
[55] Atlassian, "Definition of Ready (DoR) Explained & Key Components," vol. 2025, ed: Atlassian, 2024.

[Online]. Available: https://www.atlassian.com/agile/project-management/definition-of-ready
[56] Atlassian, "How to master backlog refinement meetings," vol. 2025, ed: Atlassian, 2025. [Online].

Available: https://www.atlassian.com/agile/project-management/backlog-refinement-meeting
[57] AVH, "How to write a useful Jira ticket," ed: Atlassian, 2022. [Online]. Available:

https://community.atlassian.com/forums/Jira-articles/How-to-write-a-useful-Jira-ticket/ba-
p/2147004

[58] J. Bancroft-Connors, "The Keys to Effective Product Backlog Refinement," vol. 2025, ed: Scrum
Alliance, 2021. [Online]. Available: https://resources.scrumalliance.org/Article/keys-effective-
product-backlog-refinement

[59] A. Borcz, "Techniki efektywnej komunikacji z klientem: kluczowe umiejętności komunikacyjne w
sprzedaży," vol. 2025, ed: Enterprise Advisors Polska, 2025. [Online]. Available:
https://enterpriseadvisors.pl/blog-o-sprzedazy/techniki-efektywnej-komunikacji-z-klientem-
kluczowe-umiejetnosci-komunikacyjne-w-sprzedazy/

[60] E. Brooks, "Mastering the Definition of Done for User Stories: 5 Key Elements for Success," vol. 2025,
ed: ONES, 2025. [Online]. Available: https://ones.com/blog/mastering-definition-of-done-user-
stories/

[61] M. Cataldo, P. Wagstrom, J. Herbsleb, and K. Carley, Identification of coordination requirements:
Implications for the Design of collaboration and awareness tools. 2006, pp. 353-362. DOI:
10.1145/1180875.1180929

https://tomecki.studio/
https://maxim-gorin.medium.com/tired-of-tasks-starting-half-baked-or-closing-half-done-learn-how-dor-and-dod-keep-your-team-aligne-b912dfdf828c
https://maxim-gorin.medium.com/tired-of-tasks-starting-half-baked-or-closing-half-done-learn-how-dor-and-dod-keep-your-team-aligne-b912dfdf828c
https://doi.org/10.1002/smr.2166
https://resources.scrumalliance.org/Article/need-know-acceptance-criteria
https://resources.scrumalliance.org/Article/definition-vs-ready
https://asana.com/pl/resources/design-brief
https://www.atlassian.com/work-management/project-management/acceptance-criteria
https://www.atlassian.com/agile/project-management/definition-of-ready
https://www.atlassian.com/agile/project-management/backlog-refinement-meeting
https://community.atlassian.com/forums/Jira-articles/How-to-write-a-useful-Jira-ticket/ba-p/2147004
https://community.atlassian.com/forums/Jira-articles/How-to-write-a-useful-Jira-ticket/ba-p/2147004
https://resources.scrumalliance.org/Article/keys-effective-product-backlog-refinement
https://resources.scrumalliance.org/Article/keys-effective-product-backlog-refinement
https://enterpriseadvisors.pl/blog-o-sprzedazy/techniki-efektywnej-komunikacji-z-klientem-kluczowe-umiejetnosci-komunikacyjne-w-sprzedazy/
https://enterpriseadvisors.pl/blog-o-sprzedazy/techniki-efektywnej-komunikacji-z-klientem-kluczowe-umiejetnosci-komunikacyjne-w-sprzedazy/
https://ones.com/blog/mastering-definition-of-done-user-stories/
https://ones.com/blog/mastering-definition-of-done-user-stories/

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 35 z 36

[62] A. Clarke, "High vs low-context: rethinking team communication," vol. 2025, ed: Vestd, 2025.
[Online]. Available: https://www.vestd.com/blog/high-context-vs-low-context-cultures-how-
communication-style-shapes-global-teams

[63] CLAYHR, "Embracing Conway’s Law: How Your Organization’s Structure Shapes Your Software," vol.
2025, ed: CLAYHR, 2025. [Online]. Available: https://www.clayhr.com/blog/embracing-conways-law-
how-your-organizations-structure-shapes-your-software

[64] F. Corp, "Bridging the Language Barrier: Enhancing Cross-Cultural Communication in International
Teams," vol. 2025, ed: Fluency Corp, 2025. [Online]. Available: https://fluencycorp.com/enhancing-
cross-cultural-communication-in-international-teams/

[65] Dawid, "Dług technologiczny w przedsiębiorstwie: Jak rozpoznać, zmierzyć i skutecznie zredukować
ukryte koszty przestarzałych systemów," vol. 2025, ed: Aveneo, 2025. [Online]. Available:
https://aveneo.pl/pl/blog/dlug-technologiczny-w-przedsiebiorstwie-jak-rozpoznac-zmierzyc-i-
zredukowac-ukryte-koszty

[66] Z. P. Expert, "Dług technologiczny – co to jest i dlaczego może zrujnować projekt IT," vol. 2025, ed:
play.pl, 2025. [Online]. Available: https://www.play.pl/play-expert/porady/dlug-technologiczny---co-
to-jest-i-dlaczego-moze-zrujnowac-projekt-it

[67] K. Fedko, "Silos informacyjny w firmie: jak go rozwiązać?," vol. 2025, ed: Thulium, 2021. [Online].
Available: https://thulium.com/pl/blog/silos-informacyjny-w-firmie-jak-go-rozwiazac

[68] S. M. Galloway, "Nurturing Psychological Safety while Upholding Accountability," vol. 2025, ed:
ProAct Safety, 2024. [Online]. Available: https://proactsafety.com/articles/nurturing-psychological-
safety-while-upholding-accountability

[69] Ideo, "Dług technologiczny – co to jest i jakie są jego skutki?," vol. 2025, ed: Ideo, 2024. [Online].
Available: https://www.ideo.pl/firma/o-nas/nasze-publikacje/dlug-technologiczny-skutki,210.html

[70] Ironhack, "Functional vs Non-Functional Requirements: Understanding the Core Differences and
Examples," vol. 2025, ed: Ironhack, 2024. [Online]. Available:
https://www.ironhack.com/us/blog/functional-vs-non-functional-requirements-understanding-the-
core-differences-and

[71] J. Janik, I. Drobina, and R. Drobina, "EFEKTYWNOŚĆ KOMUNIKACJI W ZESPOŁACH PROJEKTOWYCH
ROZPROSZONYCH GEOGRAFICZNIE," 2023, pp. 93-108. DOI 10.53052/9788367652124.10

[72] Kaspersky, "Miscommunications in IT security lead to cybersecurity incidents in 62% of companies,"
vol. 2025, ed: Kaspersky, 2023. [Online]. Available: https://www.kaspersky.com/about/press-
releases/miscommunications-in-it-security-lead-to-cybersecurity-incidents-in-62-of-companies

[73] J. Kłosińska, "Nowe formy budowania relacji z klientem w internecie za pomocą takich narzędzi jak
content marketing, real-time marketing, aplikacje mobilne, portale społecznościowe, komunikacja
video," NSZ, vol. 13, no. 3, pp. 15-27, 2018 2018, doi: 10.37055/nsz/129488. [Online]. Available:
https://doi.org/10.37055/nsz/129488

[74] G. Krüger, "Non-Functional Requirements: Tips, Tools, and Examples," vol. 2025, ed: Perforce, 2025.
[Online]. Available: https://www.perforce.com/blog/alm/what-are-non-functional-requirements-
examples

[75] LeaderFactor, "Culture of Psychological Safety," vol. 2025, ed: LeaderFactor. [Online]. Available:
https://www.leaderfactor.com/learn/culture-of-psychological-safety

[76] J. L. a. S. Lueder, "Postmortem Culture: Learning from Failure," in Site Reliability Engineering, G. O.
Connor Ed., 2016. [Online]. Available: https://sre.google/sre-book/postmortem-culture/

[77] S. Nikonenko, "Effective Brief for Software Development + Free Template," vol. 2025, ed: Purrweb,
2024. [Online]. Available: https://www.purrweb.com/blog/brief-for-software-development/

[78] S. Overflow, "A practical guide to writing technical specs," vol. 2025, ed: Stack Overflow, 2020.
[Online]. Available: https://stackoverflow.blog/2020/04/06/a-practical-guide-to-writing-technical-
specs/

[79] S. Petrova, "How to Write a Brief for a Software Project," vol. 2025, ed: Adeva, 2020. [Online].
Available: https://adevait.com/blog/startups/write-brief-for-software-project

https://tomecki.studio/
https://www.vestd.com/blog/high-context-vs-low-context-cultures-how-communication-style-shapes-global-teams
https://www.vestd.com/blog/high-context-vs-low-context-cultures-how-communication-style-shapes-global-teams
https://www.clayhr.com/blog/embracing-conways-law-how-your-organizations-structure-shapes-your-software
https://www.clayhr.com/blog/embracing-conways-law-how-your-organizations-structure-shapes-your-software
https://fluencycorp.com/enhancing-cross-cultural-communication-in-international-teams/
https://fluencycorp.com/enhancing-cross-cultural-communication-in-international-teams/
https://aveneo.pl/pl/blog/dlug-technologiczny-w-przedsiebiorstwie-jak-rozpoznac-zmierzyc-i-zredukowac-ukryte-koszty
https://aveneo.pl/pl/blog/dlug-technologiczny-w-przedsiebiorstwie-jak-rozpoznac-zmierzyc-i-zredukowac-ukryte-koszty
https://www.play.pl/play-expert/porady/dlug-technologiczny---co-to-jest-i-dlaczego-moze-zrujnowac-projekt-it
https://www.play.pl/play-expert/porady/dlug-technologiczny---co-to-jest-i-dlaczego-moze-zrujnowac-projekt-it
https://thulium.com/pl/blog/silos-informacyjny-w-firmie-jak-go-rozwiazac
https://proactsafety.com/articles/nurturing-psychological-safety-while-upholding-accountability
https://proactsafety.com/articles/nurturing-psychological-safety-while-upholding-accountability
https://www.ideo.pl/firma/o-nas/nasze-publikacje/dlug-technologiczny-skutki,210.html
https://www.ironhack.com/us/blog/functional-vs-non-functional-requirements-understanding-the-core-differences-and
https://www.ironhack.com/us/blog/functional-vs-non-functional-requirements-understanding-the-core-differences-and
https://www.kaspersky.com/about/press-releases/miscommunications-in-it-security-lead-to-cybersecurity-incidents-in-62-of-companies
https://www.kaspersky.com/about/press-releases/miscommunications-in-it-security-lead-to-cybersecurity-incidents-in-62-of-companies
https://doi.org/10.37055/nsz/129488
https://www.perforce.com/blog/alm/what-are-non-functional-requirements-examples
https://www.perforce.com/blog/alm/what-are-non-functional-requirements-examples
https://www.leaderfactor.com/learn/culture-of-psychological-safety
https://sre.google/sre-book/postmortem-culture/
https://www.purrweb.com/blog/brief-for-software-development/
https://stackoverflow.blog/2020/04/06/a-practical-guide-to-writing-technical-specs/
https://stackoverflow.blog/2020/04/06/a-practical-guide-to-writing-technical-specs/
https://adevait.com/blog/startups/write-brief-for-software-project

Komunikacja w IT

Websites...
Animations...
Development...

tomek@tomecki.studio
https://tomecki.studio

Strona 36 z 36

[80] J. Probst, "How to Tackle Technical Debt and Maintain High Software Quality," vol. 2025, ed: Qt,
2025. [Online]. Available: https://www.qt.io/quality-assurance/blog/how-to-tackle-technical-debt

[81] ProductPlan, "What is Acceptance Criteria?," vol. 2025, ed: ProductPlan, 2019. [Online]. Available:
https://www.productplan.com/glossary/acceptance-criteria/

[82] P. Safety, "What is Psychological Safety?," vol. 2025, ed: Iterum Ltd, 2010. [Online]. Available:
https://psychsafety.com/about-psychological-safety/

[83] S. Salimi, "What is the Definition of Done (DOD) in Agile?," vol. 2026, ed: Agile Academy. [Online].
Available: https://www.agile-academy.com/en/scrum-master/what-is-the-definition-of-done-dod-in-
agile/

[84] Smartling, "Low-context culture and high-context culture: Communication styles in global business,"
vol. 2025, ed: Smartling, 2025. [Online]. Available: https://www.smartling.com/blog/high-vs-low-
context-culture

[85] V. Solutions, "Functional VS Non-functional Requirements," vol. 2025, ed: Visure Solutions, 2025.
[Online]. Available: https://visuresolutions.com/alm-guide/functional-vs-non-functional-
requirements/

[86] StoriesOnBoard, "Understanding Acceptance Criteria: Examples and Best Practices," vol. 2025, ed:
StoriesOnBoard, 2023. [Online]. Available: https://storiesonboard.com/blog/acceptance-criteria-
examples

[87] K. S. J. Sutherland, "The Scrum Guide - The Definitive Guide to Scrum: The Rules of the Game."
[Online]. Available: [Online]. Available: https://scrumguides.org/docs/scrumguide/v2020/2020-
Scrum-Guide-US.pdf

[88] K. Taylor, "What does psychological safety mean, anyway?," vol. 2025, ed: Atlassian, 2024. [Online].
Available: https://www.atlassian.com/blog/teamwork/what-does-psychological-safety-mean-anyway

[89] P. L. L. Team, "Impact of poor communication in dev team productivity: 7 proven solutions," vol.
2025, ed: Preply Inc, 2025. [Online]. Available: https://preply.com/en/blog/b2b-impact-of-poor-
communication-in-dev-team-productivity/

[90] M. Tisinger, "How not to handle a cyberattack: The worst crisis communications failures," vol. 2025,
ed: CyberRisk Alliance, 2025. [Online]. Available: https://www.scworld.com/perspective/how-not-to-
handle-a-cyberattack-the-worst-crisis-communications-failures

[91] P. Weichbroth, M. Lotysz, and M. Wróbel, A survey on the impact of emotions on the productivity
among software developers. 2025. DOI: 10.48550/arXiv.2510.04611

[92] B. Wróbel, "Rola komunikacji w zarządzaniu projektami," (in pol), The role of communication in
project management, no. 3, pp. 119-129, 2007. [Online]. Available:
http://www.ejournals.eu/sj/index.php/ZP/article/view/1023

https://tomecki.studio/
https://www.qt.io/quality-assurance/blog/how-to-tackle-technical-debt
https://www.productplan.com/glossary/acceptance-criteria/
https://psychsafety.com/about-psychological-safety/
https://www.agile-academy.com/en/scrum-master/what-is-the-definition-of-done-dod-in-agile/
https://www.agile-academy.com/en/scrum-master/what-is-the-definition-of-done-dod-in-agile/
https://www.smartling.com/blog/high-vs-low-context-culture
https://www.smartling.com/blog/high-vs-low-context-culture
https://visuresolutions.com/alm-guide/functional-vs-non-functional-requirements/
https://visuresolutions.com/alm-guide/functional-vs-non-functional-requirements/
https://storiesonboard.com/blog/acceptance-criteria-examples
https://storiesonboard.com/blog/acceptance-criteria-examples
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://www.atlassian.com/blog/teamwork/what-does-psychological-safety-mean-anyway
https://preply.com/en/blog/b2b-impact-of-poor-communication-in-dev-team-productivity/
https://preply.com/en/blog/b2b-impact-of-poor-communication-in-dev-team-productivity/
https://www.scworld.com/perspective/how-not-to-handle-a-cyberattack-the-worst-crisis-communications-failures
https://www.scworld.com/perspective/how-not-to-handle-a-cyberattack-the-worst-crisis-communications-failures
http://www.ejournals.eu/sj/index.php/ZP/article/view/1023

